Journal of High Energy Physics

, 2018:130 | Cite as

New Standard Model constraints on the scales and dimension of spacetime

  • Andrea Addazi
  • Gianluca CalcagniEmail author
  • Antonino Marcianò
Open Access
Regular Article - Theoretical Physics


Using known estimates for the kaon-antikaon transitions, the mean lifetime of the muon and the mean lifetime of the tau, we place new and stronger constraints on the scales of the multi-fractional theories with weighted and q-derivatives. These scenarios reproduce a quantum-gravity regime where fields live on a continuous spacetime with a scale-dependent Hausdorff dimension. In the case with weighted derivatives, constraints from the muon lifetime are various orders of magnitude stronger than those from the tau lifetime and the kaon-antikaon transitions. The characteristic energy scale of the theory cannot be greater than E*> 3 × 102 TeV, and is tightened to E*> 9 × 108 TeV for the typical value α = 1/2 of the fractional exponents in the spacetime measure. We also find an upper bound dH< 2.9 on the spacetime Hausdorff dimension in the ultraviolet. In the case with q-derivatives, the strongest bound comes from the tau lifetime, but it is about 10 orders of magnitude weaker than for the theory with weighted derivatives.


Models of Quantum Gravity Kaon Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C 930308 (1993) 284 [gr-qc/9310026] [INSPIRE].
  2. [2]
    S. Carlip, Spontaneous dimensional reduction in short-distance quantum gravity?, AIP Conf. Proc. 1196 (2009) 72 [arXiv:0909.3329] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    G. Calcagni, Fractal universe and quantum gravity, Phys. Rev. Lett. 104 (2010) 251301 [arXiv:0912.3142] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    G. Calcagni, Multifractional theories: an unconventional review, JHEP 03 (2017) 138 [Erratum ibid. 1706 (2017) 020] [arXiv:1612.05632] [INSPIRE].
  5. [5]
    S. Carlip, Dimension and dimensional reduction in quantum gravity, Class. Quant. Grav. 34 (2017) 193001 [arXiv:1705.05417] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Schäfer and B. Müller, Bounds for the fractal dimension of space, J. Phys. A 19 (1986) 3891 [INSPIRE].Google Scholar
  7. [7]
    A. Zeilinger and K. Svozil, Measuring the dimension of space-time, Phys. Rev. Lett. 54 (1985) 2553 [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    B. Müller and A. Schäfer, Improved bounds on the dimension of space-time, Phys. Rev. Lett. 56 (1986) 1215 [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    F. Caruso and V. Oguri, The cosmic microwave background spectrum and a determination of fractal space dimensionality, Astrophys. J. 694 (2009) 151 [arXiv:0806.2675] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    G. Calcagni, J. Magueijo and D. Rodríguez Fernández, Varying electric charge in multiscale spacetimes, Phys. Rev. D 89 (2014) 024021 [arXiv:1305.3497] [INSPIRE].
  11. [11]
    G. Calcagni, G. Nardelli and D. Rodríguez-Fernández, Standard Model in multiscale theories and observational constraints, Phys. Rev. D 94 (2016) 045018 [arXiv:1512.06858] [INSPIRE].
  12. [12]
    G. Calcagni, G. Nardelli and D. Rodríguez-Fernández, Particle-physics constraints on multifractal spacetimes, Phys. Rev. D 93 (2016) 025005 [arXiv:1512.02621] [INSPIRE].
  13. [13]
    J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos and M. Srednicki, Search for violations of quantum mechanics, Nucl. Phys. B 241 (1984) 381 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  14. [14]
    G. Calcagni, Multiscale spacetimes from first principles, Phys. Rev. D 95 (2017) 064057 [arXiv:1609.02776] [INSPIRE].MathSciNetGoogle Scholar
  15. [15]
    G. Amelino-Camelia, G. Calcagni and M. Ronco, Imprint of quantum gravity in the dimension and fabric of spacetime, Phys. Lett. B 774 (2017) 630 [arXiv:1705.04876] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    G. Calcagni and M. Ronco, Dimensional flow and fuzziness in quantum gravity: emergence of stochastic spacetime, Nucl. Phys. B 923 (2017) 144 [arXiv:1706.02159] [INSPIRE].CrossRefzbMATHGoogle Scholar
  17. [17]
    G. Calcagni, Complex dimensions and their observability, Phys. Rev. D 96 (2017) 046001 [arXiv:1705.01619] [INSPIRE].MathSciNetGoogle Scholar
  18. [18]
    S. Steinhaus and J. Thürigen, Emergence of spacetime in a restricted spin-foam model, Phys. Rev. D 98 (2018) 026013 [arXiv:1803.10289] [INSPIRE].MathSciNetGoogle Scholar
  19. [19]
    P.A.M. Dirac, The cosmological constants, Nature 139 (1937) 323 [INSPIRE].CrossRefzbMATHGoogle Scholar
  20. [20]
    P.A.M. Dirac, A new basis for cosmology, Proc. Roy. Soc. A 165 (1938) 199.CrossRefzbMATHGoogle Scholar
  21. [21]
    J. Magueijo, New varying speed of light theories, Rept. Prog. Phys. 66 (2003) 2025 [astro-ph/0305457] [INSPIRE].
  22. [22]
    G. Calcagni and G. Nardelli, Quantum field theory with varying couplings, Int. J. Mod. Phys. A 29 (2014) 1450012 [arXiv:1306.0629] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    G. Calcagni and G. Nardelli, Momentum transforms and Laplacians in fractional spaces, Adv. Theor. Math. Phys. 16 (2012) 1315 [arXiv:1202.5383] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    G. Calcagni and G. Nardelli, Spectral dimension and diffusion in multiscale spacetimes, Phys. Rev. D 88 (2013) 124025 [arXiv:1304.2709] [INSPIRE].Google Scholar
  25. [25]
    G. Calcagni, Multi-scale gravity and cosmology, JCAP 12 (2013) 041 [arXiv:1307.6382] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  26. [26]
    G. Calcagni, D. Rodríguez Fernández and M. Ronco, Black holes in multi-fractional and Lorentz-violating models, Eur. Phys. J. C 77 (2017) 335 [arXiv:1703.07811] [INSPIRE].
  27. [27]
    G. Calcagni, Multifractional spacetimes from the Standard Model to cosmology, arXiv:1709.07844 [INSPIRE].
  28. [28]
    G. Calcagni, ABC of multi-fractal spacetimes and fractional sea turtles, Eur. Phys. J. C 76 (2016) 181 [Erratum ibid. C 76 (2016) 459] [arXiv:1602.01470] [INSPIRE].
  29. [29]
    Particle Data Group collaboration, M. Tanabashi et al., Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  30. [30]
    J.F. Donoghue, E. Golowich and B.R. Holstein, The ΔS = 2 matrix element for \( {K}^0\hbox{--} {\overline{K}}^0 \) mixing, Phys. Lett. B 119 (1982) 412 [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    M.E. Gámiz Sánchez, Kaon physics: CP-violation and hadronic matrix elements, Ph.D. Thesis, Granada University, Granada Spain (2003) [hep-ph/0401236] [INSPIRE].
  32. [32]
    KTeV collaboration, E. Abouzaid et al., Precise Measurements of Direct CP-violation, CPT Symmetry and Other Parameters in the Neutral Kaon System, Phys. Rev. D 83 (2011) 092001 [arXiv:1011.0127] [INSPIRE].
  33. [33]
    G. Calcagni, S. Kuroyanagi and S. Tsujikawa, Cosmic microwave background and inflation in multi-fractional spacetimes, JCAP 08 (2016) 039 [arXiv:1606.08449] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  34. [34]
    R.N. Mohapatra, J. Subbarao and R.E. Marshak, Second-order weak processes and weak-interaction cutoff, Phys. Rev. D 171 (1968) 1502.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Center for Field Theory and Particle Physics & Department of PhysicsFudan UniversityShanghaiChina
  2. 2.Instituto de Estructura de la Materia, CSICMadridSpain

Personalised recommendations