Journal of High Energy Physics

, 2018:128 | Cite as

The non-equilibrium attractor for kinetic theory in relaxation time approximation

  • M. StricklandEmail author
Open Access
Regular Article - Theoretical Physics


I demonstrate that the concept of a non-equilibrium attractor can be extended beyond the lowest-order moments typically considered in hydrodynamic treatments. Using a previously obtained exact solution to the relaxation-time approximation Boltzmann equation for a transversally homogeneous and boost-invariant system subject to Bjorken flow, I derive an equation obeyed by all moments of the one-particle distribution function. Using numerical solutions, I show that, similar to the pressure anisotropy, all moments of the distribution function exhibit attractor-like behavior wherein all initial conditions converge to a universal solution after a short time with the exception of moments which are sensitive to modes with zero longitudinal momentum and high transverse momentum. In addition, I compute the exact solution for the distribution function itself on very fine lattices in momentum space and demonstrate that (a) an attractor for the full distribution function exists and (b) solutions with generic initial conditions relax to this solution, first at low momentum and later at high momentum.


Heavy Ion Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R. Baier, A.H. Mueller, D. Schiff and D.T. Son, ‘Bottom up’ thermalization in heavy ion collisions, Phys. Lett. B 502 (2001) 51 [hep-ph/0009237] [INSPIRE].
  2. [2]
    J.-P. Blaizot and E. Iancu, The Quark gluon plasma: Collective dynamics and hard thermal loops, Phys. Rept. 359 (2002) 355 [hep-ph/0101103] [INSPIRE].
  3. [3]
    P. Romatschke and M. Strickland, Collective modes of an anisotropic quark gluon plasma, Phys. Rev. D 68 (2003) 036004 [hep-ph/0304092] [INSPIRE].
  4. [4]
    P.B. Arnold, J. Lenaghan and G.D. Moore, QCD plasma instabilities and bottom up thermalization, JHEP 08 (2003) 002 [hep-ph/0307325] [INSPIRE].
  5. [5]
    P.B. Arnold, J. Lenaghan, G.D. Moore and L.G. Yaffe, Apparent thermalization due to plasma instabilities in quark-gluon plasma, Phys. Rev. Lett. 94 (2005) 072302 [nucl-th/0409068] [INSPIRE].
  6. [6]
    S. Mrowczynski, A. Rebhan and M. Strickland, Hard loop effective action for anisotropic plasmas, Phys. Rev. D 70 (2004) 025004 [hep-ph/0403256] [INSPIRE].
  7. [7]
    A. Rebhan, P. Romatschke and M. Strickland, Hard-loop dynamics of non-Abelian plasma instabilities, Phys. Rev. Lett. 94 (2005) 102303 [hep-ph/0412016] [INSPIRE].
  8. [8]
    A. Rebhan, P. Romatschke and M. Strickland, Dynamics of quark-gluon-plasma instabilities in discretized hard-loop approximation, JHEP 09 (2005) 041 [hep-ph/0505261] [INSPIRE].
  9. [9]
    P. Romatschke and R. Venugopalan, Collective non-Abelian instabilities in a melting color glass condensate, Phys. Rev. Lett. 96 (2006) 062302 [hep-ph/0510121] [INSPIRE].
  10. [10]
    P. Romatschke and R. Venugopalan, The Unstable Glasma, Phys. Rev. D 74 (2006) 045011 [hep-ph/0605045] [INSPIRE].
  11. [11]
    P. Romatschke and A. Rebhan, Plasma Instabilities in an Anisotropically Expanding Geometry, Phys. Rev. Lett. 97 (2006) 252301 [hep-ph/0605064] [INSPIRE].
  12. [12]
    A. Rebhan, M. Strickland and M. Attems, Instabilities of an anisotropically expanding non-Abelian plasma: 1D+3V discretized hard-loop simulations, Phys. Rev. D 78 (2008) 045023 [arXiv:0802.1714] [INSPIRE].ADSGoogle Scholar
  13. [13]
    K. Fukushima and F. Gelis, The evolving Glasma, Nucl. Phys. A 874 (2012) 108 [arXiv:1106.1396] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Kurkela and G.D. Moore, Thermalization in Weakly Coupled Nonabelian Plasmas, JHEP 12 (2011) 044 [arXiv:1107.5050] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Kurkela and G.D. Moore, Bjorken Flow, Plasma Instabilities and Thermalization, JHEP 11 (2011) 120 [arXiv:1108.4684] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    J.-P. Blaizot, F. Gelis, J.-F. Liao, L. McLerran and R. Venugopalan, Bose-Einstein Condensation and Thermalization of the Quark Gluon Plasma, Nucl. Phys. A 873 (2012) 68 [arXiv:1107.5296] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Attems, A. Rebhan and M. Strickland, Instabilities of an anisotropically expanding non-Abelian plasma: 3D+3V discretized hard-loop simulations, Phys. Rev. D 87 (2013) 025010 [arXiv:1207.5795] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Berges, K. Boguslavski and S. Schlichting, Nonlinear amplification of instabilities with longitudinal expansion, Phys. Rev. D 85 (2012) 076005 [arXiv:1201.3582] [INSPIRE].ADSGoogle Scholar
  19. [19]
    T. Epelbaum and F. Gelis, Pressure isotropization in high energy heavy ion collisions, Phys. Rev. Lett. 111 (2013) 232301 [arXiv:1307.2214] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    G. Beuf, M.P. Heller, R.A. Janik and R. Peschanski, Boost-invariant early time dynamics from AdS/CFT, JHEP 10 (2009) 043 [arXiv:0906.4423] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M.P. Heller, R.A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M.P. Heller, R.A. Janik and P. Witaszczyk, A numerical relativity approach to the initial value problem in asymptotically Anti-de Sitter spacetime for plasma thermalization — an ADM formulation, Phys. Rev. D 85 (2012) 126002 [arXiv:1203.0755] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M.P. Heller, D. Mateos, W. van der Schee and D. Trancanelli, Strong Coupling Isotropization of Non-Abelian Plasmas Simplified, Phys. Rev. Lett. 108 (2012) 191601 [arXiv:1202.0981] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    W. van der Schee, Holographic thermalization with radial flow, Phys. Rev. D 87 (2013) 061901 [arXiv:1211.2218] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett. 111 (2013) 181601 [arXiv:1305.4919] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M.P. Heller, D. Mateos, W. van der Schee and M. Triana, Holographic isotropization linearized, JHEP 09 (2013) 026 [arXiv:1304.5172] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L. Keegan, A. Kurkela, P. Romatschke, W. van der Schee and Y. Zhu, Weak and strong coupling equilibration in nonabelian gauge theories, JHEP 04 (2016) 031 [arXiv:1512.05347] [INSPIRE].ADSGoogle Scholar
  30. [30]
    P.M. Chesler, Colliding shock waves and hydrodynamics in small systems, Phys. Rev. Lett. 115 (2015) 241602 [arXiv:1506.02209] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Kurkela and Y. Zhu, Isotropization and hydrodynamization in weakly coupled heavy-ion collisions, Phys. Rev. Lett. 115 (2015) 182301 [arXiv:1506.06647] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    P.M. Chesler, How big are the smallest drops of quark-gluon plasma?, JHEP 03 (2016) 146 [arXiv:1601.01583] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    M. Attems et al., Thermodynamics, transport and relaxation in non-conformal theories, JHEP 10 (2016) 155 [arXiv:1603.01254] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    M. Attems et al., Holographic Collisions in Non-conformal Theories, JHEP 01 (2017) 026 [arXiv:1604.06439] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Attems et al., Paths to equilibrium in non-conformal collisions, JHEP 06 (2017) 154 [arXiv:1703.09681] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    M. Strickland, Thermalization and isotropization in heavy-ion collisions, Pramana 84 (2015) 671 [arXiv:1312.2285] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Noronha and G.S. Denicol, Transient Fluid Dynamics of the quark-gluon Plasma According to AdS/CFT, arXiv:1104.2415 [INSPIRE].
  38. [38]
    M.P. Heller and M. Spalinski, Hydrodynamics Beyond the Gradient Expansion: Resurgence and Resummation, Phys. Rev. Lett. 115 (2015) 072501 [arXiv:1503.07514] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    W. Florkowski, M.P. Heller and M. Spalinski, New theories of relativistic hydrodynamics in the LHC era, Rept. Prog. Phys. 81 (2018) 046001 [arXiv:1707.02282] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    P. Romatschke, Relativistic Fluid Dynamics Far From Local Equilibrium, Phys. Rev. Lett. 120 (2018) 012301 [arXiv:1704.08699] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    F.S. Bemfica, M.M. Disconzi and J. Noronha, Causality and existence of solutions of relativistic viscous fluid dynamics with gravity, Phys. Rev. D 98 (2018) 104064 [arXiv:1708.06255] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Spalinski, On the hydrodynamic attractor of Yang-Mills plasma, Phys. Lett. B 776 (2018) 468 [arXiv:1708.01921] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    P. Romatschke, Relativistic Hydrodynamic Attractors with Broken Symmetries: Non-Conformal and Non-Homogeneous, JHEP 12 (2017) 079 [arXiv:1710.03234] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Behtash, C.N. Cruz-Camacho and M. Martinez, Far-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flow, Phys. Rev. D 97 (2018) 044041 [arXiv:1711.01745] [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    W. Florkowski, E. Maksymiuk and R. Ryblewski, Coupled kinetic equations for fermions and bosons in the relaxation-time approximation, Phys. Rev. C 97 (2018) 024915 [arXiv:1710.07095] [INSPIRE].ADSGoogle Scholar
  46. [46]
    W. Florkowski, E. Maksymiuk and R. Ryblewski, Anisotropic-hydrodynamics approach to a quark-gluon fluid mixture, Phys. Rev. C 97 (2018) 014904 [arXiv:1711.03872] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Strickland, J. Noronha and G. Denicol, Anisotropic nonequilibrium hydrodynamic attractor, Phys. Rev. D 97 (2018) 036020 [arXiv:1709.06644] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    D. Almaalol and M. Strickland, Anisotropic hydrodynamics with a scalar collisional kernel, Phys. Rev. C 97 (2018) 044911 [arXiv:1801.10173] [INSPIRE].ADSGoogle Scholar
  49. [49]
    G.S. Denicol and J. Noronha, Hydrodynamic attractor and the fate of perturbative expansions in Gubser flow, arXiv:1804.04771 [INSPIRE].
  50. [50]
    A. Behtash, S. Kamata, M. Martinez and C.N. Cruz-Camacho, Non-perturbative rheological behavior of a far-from-equilibrium expanding plasma, arXiv:1805.07881 [INSPIRE].
  51. [51]
    W. Florkowski, R. Ryblewski and M. Strickland, Anisotropic Hydrodynamics for Rapidly Expanding Systems, Nucl. Phys. A 916 (2013) 249 [arXiv:1304.0665] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    W. Florkowski, R. Ryblewski and M. Strickland, Testing viscous and anisotropic hydrodynamics in an exactly solvable case, Phys. Rev. C 88 (2013) 024903 [arXiv:1305.7234] [INSPIRE].ADSGoogle Scholar
  53. [53]
    W. Florkowski, E. Maksymiuk, R. Ryblewski and M. Strickland, Exact solution of the (0 + 1)-dimensional Boltzmann equation for a massive gas, Phys. Rev. C 89 (2014) 054908 [arXiv:1402.7348] [INSPIRE].ADSGoogle Scholar
  54. [54]
    W. Florkowski and E. Maksymiuk, Exact solution of the (0+1)-dimensional Boltzmann equation for massive Bose-Einstein and Fermi-Dirac gases, J. Phys. G 42 (2015) 045106 [arXiv:1411.3666] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    G.S. Denicol, U.W. Heinz, M. Martinez, J. Noronha and M. Strickland, New Exact Solution of the Relativistic Boltzmann Equation and its Hydrodynamic Limit, Phys. Rev. Lett. 113 (2014) 202301 [arXiv:1408.5646] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    G.S. Denicol, U.W. Heinz, M. Martinez, J. Noronha and M. Strickland, Studying the validity of relativistic hydrodynamics with a new exact solution of the Boltzmann equation, Phys. Rev. D 90 (2014) 125026 [arXiv:1408.7048] [INSPIRE].ADSGoogle Scholar
  57. [57]
    E. Maksymiuk, Kinetic equations and anisotropic hydrodynamics for quark and gluon fluids, EPJ Web Conf. 18 (2018) 20207 [arXiv:1712.01591] [INSPIRE].Google Scholar
  58. [58]
    G.S. Denicol, T. Koide and D.H. Rischke, Dissipative relativistic fluid dynamics: a new way to derive the equations of motion from kinetic theory, Phys. Rev. Lett. 105 (2010) 162501 [arXiv:1004.5013] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    G.S. Denicol, J. Noronha, H. Niemi and D.H. Rischke, Origin of the Relaxation Time in Dissipative Fluid Dynamics, Phys. Rev. D 83 (2011) 074019 [arXiv:1102.4780] [INSPIRE].ADSGoogle Scholar
  60. [60]
    A. Jaiswal, Relativistic dissipative hydrodynamics from kinetic theory with relaxation time approximation, Phys. Rev. C 87 (2013) 051901 [arXiv:1302.6311] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A. Jaiswal, Relativistic third-order dissipative fluid dynamics from kinetic theory, Phys. Rev. C 88 (2013) 021903 [arXiv:1305.3480] [INSPIRE].ADSGoogle Scholar
  62. [62]
    G.S. Denicol, W. Florkowski, R. Ryblewski and M. Strickland, Shear-bulk coupling in nonconformal hydrodynamics, Phys. Rev. C 90 (2014) 044905 [arXiv:1407.4767] [INSPIRE].ADSGoogle Scholar
  63. [63]
    W. Florkowski, A. Jaiswal, E. Maksymiuk, R. Ryblewski and M. Strickland, Relativistic quantum transport coefficients for second-order viscous hydrodynamics, Phys. Rev. C 91 (2015) 054907 [arXiv:1503.03226] [INSPIRE].ADSGoogle Scholar
  64. [64]
    A. Bialas and W. Czyż, Boost-invariant Boltzmann-Vlasov equations for relativistic quark-antiquark plasma, Phys. Rev. D 30 (1984) 2371 [INSPIRE].ADSGoogle Scholar
  65. [65]
    A. Bialas, W. Czyż, A. Dyrek and W. Florkowski, Oscillations of quark-gluon Plasma Generated in Strong Color Fields, Nucl. Phys. B 296 (1988) 611 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    G. Baym, Thermal equilibration in ultrarelativistic heavy ion collisions, Phys. Lett. B 138 (1984) 18 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    W. Florkowski and R. Ryblewski, Highly-anisotropic and strongly-dissipative hydrodynamics for early stages of relativistic heavy-ion collisions, Phys. Rev. C 83 (2011) 034907 [arXiv:1007.0130] [INSPIRE].ADSGoogle Scholar
  68. [68]
    M. Martinez and M. Strickland, Dissipative Dynamics of Highly Anisotropic Systems, Nucl. Phys. A 848 (2010) 183 [arXiv:1007.0889] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    L. Tinti and W. Florkowski, Projection method and new formulation of leading-order anisotropic hydrodynamics, Phys. Rev. C 89 (2014) 034907 [arXiv:1312.6614] [INSPIRE].ADSGoogle Scholar
  70. [70]
    M. Alqahtani, M. Nopoush and M. Strickland, Relativistic anisotropic hydrodynamics, Prog. Part. Nucl. Phys. 101 (2018) 204 [arXiv:1712.03282] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
  72. [72]
    M.P. Heller, A. Kurkela, M. Spalinski and V. Svensson, Hydrodynamization in kinetic theory: Transient modes and the gradient expansion, Phys. Rev. D 97 (2018) 091503 [arXiv:1609.04803] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsKent State UniversityKentU.S.A.

Personalised recommendations