Advertisement

Journal of High Energy Physics

, 2018:126 | Cite as

Anomaly-free dark matter with harmless direct detection constraints

  • S. Caron
  • J. A. Casas
  • J. QuilisEmail author
  • R. Ruiz de Austri
Open Access
Regular Article - Theoretical Physics

Abstract

Dark matter (DM) interacting with the SM fields via a Z′-boson (‘Z′-portal’) remains one of the most attractive WIMP scenarios, both from the theoretical and the phenomenological points of view. In order to avoid the strong constraints from direct detection and dilepton production, it is highly convenient that the Z′ has axial coupling to DM and leptophobic couplings to the SM particles, respectively. The latter implies that the associated U(1) coincides with baryon number in the SM sector. In this paper we completely classify the possible anomaly-free leptophobic Z′ with minimal dark sector, including the cases where the coupling to DM is axial. The resulting scenario is very predictive and perfectly viable from the present constraints from DM detection, EW observables and LHC data (di-lepton, di-jet and mono-jet production). We analyze all these constraints, obtaining the allowed areas in the parameter space, which generically prefer \( {m}_{Z^{\prime }} \) ≲ 500 GeV, apart from resonant regions. The best chances to test these viable areas come from future LHC measurements.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Langacker, R.W. Robinett and J.L. Rosner, New Heavy Gauge Bosons in pp and pp Collisions, Phys. Rev. D 30 (1984) 1470 [INSPIRE].ADSGoogle Scholar
  2. [2]
    P. Langacker, The Physics of Heavy ZGauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    P. Fileviez Perez and M.B. Wise, Baryon and lepton number as local gauge symmetries, Phys. Rev. D 82 (2010) 011901 [Erratum ibid. D 82 (2010) 079901] [arXiv:1002.1754] [INSPIRE].
  4. [4]
    M.T. Frandsen, F. Kahlhoefer, S. Sarkar and K. Schmidt-Hoberg, Direct detection of dark matter in models with a light Z′, JHEP 09 (2011) 128 [arXiv:1107.2118] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Duerr, P. Fileviez Perez and M.B. Wise, Gauge Theory for Baryon and Lepton Numbers with Leptoquarks, Phys. Rev. Lett. 110 (2013) 231801 [arXiv:1304.0576] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Duerr and P. Fileviez Perez, Baryonic Dark Matter, Phys. Lett. B 732 (2014) 101 [arXiv:1309.3970] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Alves, S. Profumo and F.S. Queiroz, The dark Zportal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Zand dark matter: LHC vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    O. Lebedev and Y. Mambrini, Axial dark matter: The case for an invisible Z′, Phys. Lett. B 734 (2014) 350 [arXiv:1403.4837] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Duerr and P. Fileviez Perez, Theory for Baryon Number and Dark Matter at the LHC, Phys. Rev. D 91 (2015) 095001 [arXiv:1409.8165] [INSPIRE].ADSGoogle Scholar
  11. [11]
    P. Fileviez Perez, New Paradigm for Baryon and Lepton Number Violation, Phys. Rept. 597 (2015) 1 [arXiv:1501.01886] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    M. Duerr, P. Fileviez Perez and J. Smirnov, Gamma Lines from Majorana Dark Matter, Phys. Rev. D 93 (2016) 023509 [arXiv:1508.01425] [INSPIRE].ADSGoogle Scholar
  13. [13]
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Jacques, A. Katz, E. Morgante, D. Racco, M. Rameez and A. Riotto, Complementarity of DM searches in a consistent simplified model: the case of Z′, JHEP 10 (2016) 071 [arXiv:1605.06513] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Fairbairn, J. Heal, F. Kahlhoefer and P. Tunney, Constraints on Zmodels from LHC dijet searches and implications for dark matter, JHEP 09 (2016) 018 [arXiv:1605.07940] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G. Arcadi, M.D. Campos, M. Lindner, A. Masiero and F.S. Queiroz, Dark sequential Zportal: Collider and direct detection experiments, Phys. Rev. D 97 (2018) 043009 [arXiv:1708.00890] [INSPIRE].ADSGoogle Scholar
  17. [17]
    P. Fileviez Perez, S. Ohmer and H.H. Patel, Minimal Theory for Lepto-Baryons, Phys. Lett. B 735 (2014) 283 [arXiv:1403.8029] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Ohmer and H.H. Patel, Leptobaryons as Majorana Dark Matter, Phys. Rev. D 92 (2015) 055020 [arXiv:1506.00954] [INSPIRE].ADSGoogle Scholar
  19. [19]
    A. Ismail, W.-Y. Keung, K.-H. Tsao and J. Unwin, Axial vector Zand anomaly cancellation, Nucl. Phys. B 918 (2017) 220 [arXiv:1609.02188] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    N. Okada, S. Okada and D. Raut, SU(5) × U(1)X grand unification with minimal seesaw and Z-portal dark matter, Phys. Lett. B 780 (2018) 422 [arXiv:1712.05290] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    N. Okada and S. Okada, Z-portal right-handed neutrino dark matter in the minimal U(1)X extended Standard Model, Phys. Rev. D 95 (2017) 035025 [arXiv:1611.02672] [INSPIRE].ADSGoogle Scholar
  22. [22]
    T. Bandyopadhyay, G. Bhattacharyya, D. Das and A. Raychaudhuri, Reappraisal of constraints on Zmodels from unitarity and direct searches at the LHC, Phys. Rev. D 98 (2018) 035027 [arXiv:1803.07989] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J. Ellis, M. Fairbairn and P. Tunney, Anomaly-Free Dark Matter Models are not so Simple, JHEP 08 (2017) 053 [arXiv:1704.03850] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A. Pais, Remark on baryon conservation, Phys. Rev. D 8 (1973) 1844 [INSPIRE].ADSGoogle Scholar
  25. [25]
    S. Rajpoot, Gauge symmetries of electroweak interactions, Int. J. Theor. Phys. 27 (1988) 689 [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    R. Foot, G.C. Joshi and H. Lew, Gauged Baryon and Lepton Numbers, Phys. Rev. D 40 (1989) 2487 [INSPIRE].ADSGoogle Scholar
  27. [27]
    C.D. Carone and H. Murayama, Realistic models with a light U(1) gauge boson coupled to baryon number, Phys. Rev. D 52 (1995) 484 [hep-ph/9501220] [INSPIRE].
  28. [28]
    H. Georgi and S.L. Glashow, Decays of a leptophobic gauge boson, Phys. Lett. B 387 (1996) 341 [hep-ph/9607202] [INSPIRE].
  29. [29]
    T.R. Dulaney, P. Fileviez Perez and M.B. Wise, Dark Matter, Baryon Asymmetry and Spontaneous B and L Breaking, Phys. Rev. D 83 (2011) 023520 [arXiv:1005.0617] [INSPIRE].ADSGoogle Scholar
  30. [30]
    P. Fileviez Perez and M.B. Wise, Breaking Local Baryon and Lepton Number at the TeV Scale, JHEP 08 (2011) 068 [arXiv:1106.0343] [INSPIRE].CrossRefzbMATHGoogle Scholar
  31. [31]
    J.M. Arnold, P. Fileviez Pérez, B. Fornal and S. Spinner, B and L at the supersymmetry scale, dark matter and R-parity violation, Phys. Rev. D 88 (2013) 115009 [arXiv:1310.7052] [INSPIRE].ADSGoogle Scholar
  32. [32]
    P. Fileviez Pérez and H.H. Patel, Baryon Asymmetry, Dark Matter and Local Baryon Number, Phys. Lett. B 731 (2014) 232 [arXiv:1311.6472] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    B. Batell, P. deNiverville, D. McKeen, M. Pospelov and A. Ritz, Leptophobic Dark Matter at Neutrino Factories, Phys. Rev. D 90 (2014) 115014 [arXiv:1405.7049] [INSPIRE].
  34. [34]
    M. Duerr, F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, How to save the WIMP: global analysis of a dark matter model with two s-channel mediators, JHEP 09 (2016) 042 [arXiv:1606.07609] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    C. Corianò, L. Delle Rose and C. Marzo, Constraints on abelian extensions of the Standard Model from two-loop vacuum stability and U(1)BL, JHEP 02 (2016) 135 [arXiv:1510.02379] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  37. [37]
    G. Arcadi, Y. Mambrini and F. Richard, Z-portal dark matter, JCAP 03 (2015) 018 [arXiv:1411.2985] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    XENON collaboration, E. Aprile et al., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  39. [39]
    M. Baak and R. Kogler, The global electroweak Standard Model fit after the Higgs discovery, in Proceedings, 48th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy, March 2–9, 2013, pp. 349-358 (2013) [arXiv:1306.0571] [INSPIRE].
  40. [40]
    ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36.1 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2017-027.
  41. [41]
    ATLAS collaboration, Search for new light resonances decaying to jet pairs and produced in association with a photon or a jet in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-070.
  42. [42]
    ATLAS collaboration, Search for new phenomena in dijet events using 37 fb −1 of pp collision data collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 052004 [arXiv:1703.09127] [INSPIRE].
  43. [43]
    ATLAS collaboration, Search for low-mass dijet resonances using trigger-level jets with the ATLAS detector in pp collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 121 (2018) 081801 [arXiv:1804.03496] [INSPIRE].
  44. [44]
    ATLAS collaboration, Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 032016 [arXiv:1805.09299] [INSPIRE].
  45. [45]
    ATLAS collaboration, Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 788 (2019) 316 [arXiv:1801.08769] [INSPIRE].
  46. [46]
    UA2 collaboration, J. Alitti et al., A Search for new intermediate vector mesons and excited quarks decaying to two jets at the CERN \( \overline{p}p \) collider, Nucl. Phys. B 400 (1993) 3 [INSPIRE].
  47. [47]
    CDF collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \( \sqrt{s} \) = 1.96-TeV, Phys. Rev. D 79 (2009) 112002 [arXiv:0812.4036] [INSPIRE].
  48. [48]
    D. Barducci et al., Collider limits on new physics within MicrOMEGAs 4.3, Comput. Phys. Commun. 222 (2018) 327 [arXiv:1606.03834] [INSPIRE].
  49. [49]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [Erratum ibid. C 75 (2015) 408] [arXiv:1502.01518] [INSPIRE].
  50. [50]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  51. [51]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  52. [52]
    M.S. Chanowitz, M.A. Furman and I. Hinchliffe, Weak Interactions of Ultraheavy Fermions, Phys. Lett. B 78 (1978) 285 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J. Ellis, M. Fairbairn and P. Tunney, Phenomenological Constraints on Anomaly-Free Dark Matter Models, arXiv:1807.02503 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • S. Caron
    • 1
    • 2
  • J. A. Casas
    • 3
  • J. Quilis
    • 3
    Email author
  • R. Ruiz de Austri
    • 4
  1. 1.Institute for Mathematics, Astrophysics and Particle Physics, Faculty of ScienceRadboud University NijmegenNijmegenThe Netherlands
  2. 2.NikhefAmsterdamThe Netherlands
  3. 3.Instituto de Física Teórica, IFT-UAM/CSICUniversidad Autónoma de MadridMadridSpain
  4. 4.Instituto de Física Corpuscular, IFIC-UV/CSICValenciaSpain

Personalised recommendations