Journal of High Energy Physics

, 2018:125 | Cite as

Scalar blocks as gravitational Wilson networks

  • Atanu Bhatta
  • Prashanth Raman
  • Nemani V. SuryanarayanaEmail author
Open Access
Regular Article - Theoretical Physics


In this paper we continue to develop further our prescription [arXiv:1602.02962] to holographically compute the conformal partial waves of CFT correlation functions using the gravitational open Wilson network operators in the bulk. In particular, we demonstrate how to implement it to compute four-point scalar partial waves in general dimension. In the process we introduce the concept of OPE modules, that helps us simplify the computations. Our result for scalar partial waves is naturally given in terms of the Gegenbauer polynomials. We also provide a simpler proof of a previously known recursion relation for the even dimensional CFT partial waves, which naturally leads us to an odd dimensional counterpart.


AdS-CFT Correspondence Conformal Field Theory Classical Theories of Gravity Conformal and W Symmetry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE].
  2. [2]
    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    D. Simmons-Duffin, Projectors, shadows and conformal blocks, JHEP 04 (2014) 146 [arXiv:1204.3894] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].zbMATHGoogle Scholar
  6. [6]
    M. Hogervorst, H. Osborn and S. Rychkov, Diagonal limit for conformal blocks in d dimensions, JHEP 08 (2013) 014 [arXiv:1305.1321] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    M. Hogervorst and S. Rychkov, Radial coordinates for conformal blocks, Phys. Rev. D 87 (2013) 106004 [arXiv:1303.1111] [INSPIRE].Google Scholar
  8. [8]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten diagrams revisited: the AdS geometry of conformal blocks, JHEP 01 (2016) 146 [arXiv:1508.00501] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS 3 gravity, JHEP 12 (2015) 077 [arXiv:1508.04987] [INSPIRE].zbMATHGoogle Scholar
  10. [10]
    M. Nishida and K. Tamaoka, Geodesic Witten diagrams with an external spinning field, PTEP 2017 (2017) 053B06 [arXiv:1609.04563] [INSPIRE].
  11. [11]
    E. Dyer, D.Z. Freedman and J. Sully, Spinning geodesic Witten diagrams, JHEP 11 (2017) 060 [arXiv:1702.06139] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    H.-Y. Chen, E.-J. Kuo and H. Kyono, Anatomy of geodesic Witten diagrams, JHEP 05 (2017) 070 [arXiv:1702.08818] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Castro, E. Llabrés and F. Rejon-Barrera, Geodesic diagrams, gravitational interactions & OPE structures, JHEP 06 (2017) 099 [arXiv:1702.06128] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    V.A. Belavin and R.V. Geiko, Geodesic description of heavy-light Virasoro blocks, JHEP 08 (2017) 125 [arXiv:1705.10950] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    P. Kraus, A. Maloney, H. Maxfield, G.S. Ng and J.-Q. Wu, Witten diagrams for torus conformal blocks, JHEP 09 (2017) 149 [arXiv:1706.00047] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    K. Tamaoka, Geodesic Witten diagrams with antisymmetric tensor exchange, Phys. Rev. D 96 (2017) 086007 [arXiv:1707.07934] [INSPIRE].MathSciNetGoogle Scholar
  17. [17]
    N. Anand, H. Chen, A.L. Fitzpatrick, J. Kaplan and D. Li, An exact operator that knows its location, JHEP 02 (2018) 012 [arXiv:1708.04246] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Nishida and K. Tamaoka, Fermions in geodesic Witten diagrams, JHEP 07 (2018) 149 [arXiv:1805.00217] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A. Bhatta, P. Raman and N.V. Suryanarayana, Holographic conformal partial waves as gravitational open Wilson networks, JHEP 06 (2016) 119 [arXiv:1602.02962] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    M. Besken, A. Hegde, E. Hijano and P. Kraus, Holographic conformal blocks from interacting Wilson lines, JHEP 08 (2016) 099 [arXiv:1603.07317] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, Exact Virasoro blocks from Wilson lines and background-independent operators, JHEP 07 (2017) 092 [arXiv:1612.06385] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    M. Besken, A. Hegde and P. Kraus, Anomalous dimensions from quantum Wilson lines, arXiv:1702.06640 [INSPIRE].
  23. [23]
    Y. Hikida and T. Uetoko, Correlators in higher-spin AdS 3 holography from Wilson lines with loop corrections, PTEP 2017 (2017) 113B03 [arXiv:1708.08657] [INSPIRE].
  24. [24]
    Y. Hikida and T. Uetoko, Conformal blocks from Wilson lines with loop corrections, Phys. Rev. D 97 (2018) 086014 [arXiv:1801.08549] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  25. [25]
    S.W. MacDowell and F. Mansouri, Unified geometric theory of gravity and supergravity, Phys. Rev. Lett. 38 (1977) 739 [Erratum ibid. 38 (1977) 1376] [INSPIRE].
  26. [26]
    L. Freidel and A. Starodubtsev, Quantum gravity in terms of topological observables, hep-th/0501191 [INSPIRE].
  27. [27]
    H. Verlinde, Poking holes in AdS/CFT: bulk fields from boundary states, arXiv:1505.05069 [INSPIRE].
  28. [28]
    M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, Continuous multiscale entanglement renormalization ansatz as holographic surface-state correspondence, Phys. Rev. Lett. 115 (2015) 171602 [arXiv:1506.01353] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    Y. Nakayama and H. Ooguri, Bulk locality and boundary creating operators, JHEP 10 (2015) 114 [arXiv:1507.04130] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, A stereoscopic look into the bulk, JHEP 07 (2016) 129 [arXiv:1604.03110] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers, Entanglement, holography and causal diamonds, JHEP 08 (2016) 162 [arXiv:1606.03307] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    A. Castro, N. Iqbal and E. Llabrés, Wilson lines and Ishibashi states in AdS 3 /CFT 2, JHEP 09 (2018) 066 [arXiv:1805.05398] [INSPIRE].CrossRefzbMATHGoogle Scholar
  33. [33]
    G.A. Kerimov and I.A. Verdiev, Clebsch-Gordan coefficients of the groups SO(P, 1), Rept. Math. Phys. 20 (1984) 247 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    Z.-Y. Wen and J. Avery, Some properties of hyperspherical harmonics, J. Math. Phys. 26 (1985) 396.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    G. Junker, Explicit evaluation of coupling coefficients for the most degenerate representations of SO(n), J. Phys. A 26 (1993) 1649.MathSciNetzbMATHGoogle Scholar
  36. [36]
    H.S. Cohl, On a generalization of the generating function for Gegenbauer polynomials, Integ. Trans. Spec. Funct. 24 (2013) 807.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    S. Terashima, AdS/CFT correspondence in operator formalism, JHEP 02 (2018) 019 [arXiv:1710.07298] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    J. Penedones, E. Trevisani and M. Yamazaki, Recursion relations for conformal blocks, JHEP 09 (2016) 070 [arXiv:1509.00428] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    M. Hogervorst, Dimensional reduction for conformal blocks, JHEP 09 (2016) 017 [arXiv:1604.08913] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    J. Qiao and S. Rychkov, A tauberian theorem for the conformal bootstrap, JHEP 12 (2017) 119 [arXiv:1709.00008] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    D.J. Gross and V. Rosenhaus, All point correlation functions in SYK, JHEP 12 (2017) 148 [arXiv:1710.08113] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    R. Jackiw and V.P. Nair, Relativistic wave equations for anyons, Phys. Rev. D 43 (1991) 1933 [INSPIRE].MathSciNetGoogle Scholar
  43. [43]
    M. Bañados, Three-dimensional quantum geometry and black holes, AIP Conf. Proc. 484 (1999) 147 [hep-th/9901148] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    S.S. Gubser, Absorption of photons and fermions by black holes in four-dimensions, Phys. Rev. D 56 (1997) 7854 [hep-th/9706100] [INSPIRE].Google Scholar
  45. [45]
    S. Datta and J.R. David, Higher spin quasinormal modes and one-loop determinants in the BTZ black hole, JHEP 03 (2012) 079 [arXiv:1112.4619] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  46. [46]
    B. Chen and J.-Q. Wu, Higher spin entanglement entropy at finite temperature with chemical potential, JHEP 07 (2016) 049 [arXiv:1604.03644] [INSPIRE].CrossRefzbMATHGoogle Scholar
  47. [47]
    A. Bhatta, P. Raman and N.V. Suryanarayana, Notes on general CPW from gravitational OWNs in 2d CFTs, unpulished.Google Scholar
  48. [48]
    A. Bhatta, P. Raman and N.V. Suryanarayana, Towards general holographic CPW in higher dimensional CFTs, work in progress.Google Scholar
  49. [49]
    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal blocks, JHEP 11 (2011) 154 [arXiv:1109.6321] [INSPIRE].CrossRefzbMATHGoogle Scholar
  50. [50]
    D. Karateev, P. Kravchuk and D. Simmons-Duffin, Weight shifting operators and conformal blocks, JHEP 02 (2018) 081 [arXiv:1706.07813] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    M.S. Costa and T. Hansen, AdS weight shifting operators, JHEP 09 (2018) 040 [arXiv:1805.01492] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    Y. Nakayama, Bootstrapping critical Ising model on three-dimensional real projective space, Phys. Rev. Lett. 116 (2016) 141602 [arXiv:1601.06851] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].
  54. [54]
    A. Gadde, Conformal constraints on defects, arXiv:1602.06354 [INSPIRE].
  55. [55]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a holographic description of the black hole interior, Phys. Rev. D 75 (2007) 106001 [Erratum ibid. D 75 (2007) 129902] [hep-th/0612053] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Atanu Bhatta
    • 1
    • 2
  • Prashanth Raman
    • 1
    • 2
  • Nemani V. Suryanarayana
    • 1
    • 2
    Email author
  1. 1.Institute of Mathematical SciencesChennaiIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations