Journal of High Energy Physics

, 2018:124 | Cite as

Weyl semimetal/insulator transition from holography

  • Yan Liu
  • Junkun ZhaoEmail author
Open Access
Regular Article - Theoretical Physics


We study a holographic model which exhibits a quantum phase transition from the strongly interacting Weyl semimetal phase to an insulating phase. In the holographic insulating phase there is a hard gap in the real part of frequency dependent diagonal conductivities. However, the anomalous Hall conductivity is nonzero at zero frequency, indicting that it is a Chern insulator. This holographic quantum phase transition is always of first order, signified by a discontinuous anomalous Hall conductivity at the phase transition, in contrast to the very continuous holographic Weyl semimetal/trivial semimetal phase transition. Our work reveals the novel phase structure of strongly interacting Weyl semimetal.


Holography and condensed matter physics (AdS/CMT) Gauge-gravity correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    E. Witten, Three lectures on topological phases of matter, Riv. Nuovo Cim. 39 (2016) 313 [arXiv:1510.07698] [INSPIRE].ADSGoogle Scholar
  2. [2]
    N.P. Armitage, E.J. Mele and A. Vishwanath, Weyl and Dirac semimetals in three dimensional solids, Rev. Mod. Phys. 90 (2018) 015001 [arXiv:1705.01111] [INSPIRE].
  3. [3]
    A.A. Burkov, M.D. Hook and L. Balents, Topological nodal semimetals, Phys. Rev. B 84 (2011) 235126 [arXiv:1110.1089].
  4. [4]
    K. Landsteiner, Notes on anomaly induced transport, Acta Phys. Polon. B 47 (2016) 2617 [arXiv:1610.04413] [INSPIRE].
  5. [5]
    J. Zaanen, Electrons go with the flow in exotic material systems, Science 351 (2016) 1026.ADSCrossRefGoogle Scholar
  6. [6]
    J. Zaanen, Y.W. Sun, Y. Liu and K. Schalm, Holographic duality in condensed matter physics, Cambridge University Press, Cambridge U.K. (2015).Google Scholar
  7. [7]
    M. Ammon and J. Erdmenger, Gauge/gravity duality: foundations and applications, Cambridge University Press, Cambridge U.K. (2015).Google Scholar
  8. [8]
    S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
  9. [9]
    K. Landsteiner, Y. Liu and Y.-W. Sun, Quantum phase transition between a topological and a trivial semimetal from holography, Phys. Rev. Lett. 116 (2016) 081602 [arXiv:1511.05505] [INSPIRE].
  10. [10]
    K. Landsteiner and Y. Liu, The holographic Weyl semi-metal, Phys. Lett. B 753 (2016) 453 [arXiv:1505.04772] [INSPIRE].
  11. [11]
    U. Gürsoy et al., Holographic models for undoped Weyl semimetals, JHEP 04 (2013) 127 [arXiv:1209.2593] [INSPIRE].
  12. [12]
    K. Hashimoto, S. Kinoshita, K. Murata and T. Oka, Holographic Floquet states I: a strongly coupled Weyl semimetal, JHEP 05 (2017) 127 [arXiv:1611.03702] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    M. Ammon, M. Heinrich, A. Jiménez-Alba and S. Moeckel, Surface states in holographic Weyl semimetals, Phys. Rev. Lett. 118 (2017) 201601 [arXiv:1612.00836] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    Y. Liu and Y.-W. Sun, Topological invariants for holographic semimetals, JHEP 10 (2018) 189 [arXiv:1809.00513] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Y. Liu and Y.-W. Sun, Topological nodal line semimetals in holography, JHEP 12 (2018) 072 [arXiv:1801.09357] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    K. Landsteiner, Y. Liu and Y.-W. Sun, Odd viscosity in the quantum critical region of a holographic Weyl semimetal, Phys. Rev. Lett. 117 (2016) 081604 [arXiv:1604.01346] [INSPIRE].
  17. [17]
    G. Grignani, A. Marini, F. Pena-Benitez and S. Speziali, AC conductivity for a holographic Weyl Semimetal, JHEP 03 (2017) 125 [arXiv:1612.00486] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    C. Copetti, J. Fernández-Pendás and K. Landsteiner, Axial Hall effect and universality of holographic Weyl semi-metals, JHEP 02 (2017) 138 [arXiv:1611.08125] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    M. Ammon, M. Baggioli, A. Jiménez-Alba and S. Moeckel, A smeared quantum phase transition in disordered holography, JHEP 04 (2018) 068 [arXiv:1802.08650] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    M. Baggioli, B. Padhi, P.W. Phillips and C. Setty, Conjecture on the butterfly velocity across a quantum phase transition, JHEP 07 (2018) 049 [arXiv:1805.01470] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A.A. Burkov and L. Balents, Weyl semimetal in a topological insulator multilayer, Phys. Rev. Lett. 107 (2011) 127205 [arXiv:1105.5138] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    B. Roy, P. Goswami and V. Juricic, Interacting Weyl fermions: phases, phase transitions and global phase diagram, Phys. Rev. B 95 (2017) 201102 [arXiv:1610.05762] [INSPIRE].
  23. [23]
    C.Z. Chen et al., Disorder and metal-insulator transitions in Weyl semimetals, Phys. Rev. Lett. 115 (2015) 246603 [arXiv:1507.00128].
  24. [24]
    B. Roy, R.-J. Slager and V. Juricic, Global phase diagram of a dirty Weyl liquid and emergent superuniversality, Phys. Rev. X 8 (2018) 031076 [arXiv:1610.08973] [INSPIRE].
  25. [25]
    M. Ammon et al., On holographic p-wave superfluids with back-reaction, Phys. Lett. B 686 (2010) 192 [arXiv:0912.3515] [INSPIRE].
  26. [26]
    E. Kiritsis and J. Ren, On holographic insulators and supersolids, JHEP 09 (2015) 168 [arXiv:1503.03481] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S.S. Gubser, Curvature singularities: the Good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    C. Charmousis et al., Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Confinement and condensates without fine tuning in supergravity duals of gauge theories, JHEP 05 (1999) 026 [hep-th/9903026] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    H. Liu and M. Mezei, Probing renormalization group flows using entanglement entropy, JHEP 01 (2014) 098 [arXiv:1309.6935] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [INSPIRE].
  34. [34]
    S.A. Hartnoll and L. Huijse, Fractionalization of holographic Fermi surfaces, Class. Quant. Grav. 29 (2012) 194001 [arXiv:1111.2606] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    A. Donos and S.A. Hartnoll, Interaction-driven localization in holography, Nature Phys. 9 (2013) 649 [arXiv:1212.2998] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A.G. Grushin, Consequences of a condensed matter realization of Lorentz violating QED in Weyl semi-metals, Phys. Rev. D 86 (2012) 045001 [arXiv:1205.3722] [INSPIRE].
  37. [37]
    A.A. Zyuzin and A.A. Burkov, Topological response in Weyl semimetals and the chiral anomaly, Phys. Rev. B 86 (2012) 115133 [arXiv:1206.1868] [INSPIRE].
  38. [38]
    P. Goswami and S. Tewari, Axionic field theory of (3 + 1)-dimensional Weyl semimetals, Phys. Rev. B 88 (2013) 245107 [arXiv:1210.6352] [INSPIRE].
  39. [39]
    Y. Yoshimura et al., Comparative study of Weyl semimetal and topological/Chern insulators: Thin-film point of view, Phys. Rev. B 94 (2016) 235414 [arXiv:1606.02091] [INSPIRE].
  40. [40]
    L. Lu and Z. Wang, Topological one-way fiber of second Chern number, arXiv:1611.01998.

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Space Science, and International Research Institute of Multidisciplinary ScienceBeihang UniversityBeijingChina

Personalised recommendations