Advertisement

Journal of High Energy Physics

, 2018:120 | Cite as

In-medium loop corrections and longitudinally polarized gauge bosons in high-energy showers

  • Peter ArnoldEmail author
  • Shahin Iqbal
Open Access
Regular Article - Theoretical Physics

Abstract

The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. We continue study of the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD), avoiding soft-emission approximations. In this particular paper, we show (i) how the “instantaneous” interactions of Light-Cone Perturbation Theory must be included in the calculation to account for effects of longitudinally-polarized gauge bosons in intermediate states, and (ii) how to compute virtual corrections to LPM emission rates, which will be necessary in order to make infrared-safe calculations of the characteristics of in-medium QCD showering of high-energy partons. In order to develop these topics in as simple a context as possible, we will focus in the current paper not on QCD but on large-Nf QED, where Nf is the number of electron flavors.

Keywords

Quark-Gluon Plasma Perturbative QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L.D. Landau and I. Pomeranchuk, Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies (in Russian), Dokl. Akad. Nauk Ser. Fiz. 92 (1953) 535 [INSPIRE].
  2. [2]
    L.D. Landau and I. Pomeranchuk, Electron cascade process at very high energies (in Russian), Dokl. Akad. Nauk Ser. Fiz. 92 (1953) 735 [INSPIRE].
  3. [3]
    A.B. Migdal, Bremsstrahlung and pair production in condensed media at high-energies, Phys. Rev. 103 (1956) 1811 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    J.-P. Blaizot and Y. Mehtar-Tani, Renormalization of the jet-quenching parameter, Nucl. Phys. A 929 (2014) 202 [arXiv:1403.2323] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    E. Iancu, The non-linear evolution of jet quenching, JHEP 10 (2014) 095 [arXiv:1403.1996] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    B. Wu, Radiative energy loss and radiative p -broadening of high-energy partons in QCD matter, JHEP 12 (2014) 081 [arXiv:1408.5459] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    P. Arnold and S. Iqbal, The LPM effect in sequential bremsstrahlung, JHEP 04 (2015) 070 [Erratum ibid. 09 (2016) 072] [arXiv:1501.04964] [INSPIRE].
  8. [8]
    P. Arnold, H.-C. Chang and S. Iqbal, The LPM effect in sequential bremsstrahlung 2: factorization, JHEP 09 (2016) 078 [arXiv:1605.07624] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P. Arnold, H.-C. Chang and S. Iqbal, The LPM effect in sequential bremsstrahlung: dimensional regularization, JHEP 10 (2016) 100 [arXiv:1606.08853] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P. Arnold, H.-C. Chang and S. Iqbal, The LPM effect in sequential bremsstrahlung: 4-gluon vertices, JHEP 10 (2016) 124 [arXiv:1608.05718] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G.P. Lepage and S.J. Brodsky, Exclusive Processes in Perturbative Quantum Chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].ADSGoogle Scholar
  12. [12]
    S.J. Brodsky and G.P. Lepage, Exclusive Processes in Quantum Chromodynamics, Adv. Ser. Direct. High Energy Phys. 5 (1989) 93 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    S.J. Brodsky, H.-C. Pauli and S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rept. 301 (1998) 299 [hep-ph/9705477] [INSPIRE].
  14. [14]
    Y.V. Kovchegov and E. Levin, Quantum chromodynamics at high energy, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 33 (2012) [errata available at https://www.physics.ohio-state.edu/~yuri/typos.pdf] [INSPIRE].
  15. [15]
    L. Mantovani, B. Pasquini, X. Xiong and A. Bacchetta, Revisiting the equivalence of light-front and covariant QED in the light-cone gauge, Phys. Rev. D 94 (2016) 116005 [arXiv:1609.00746] [INSPIRE].ADSGoogle Scholar
  16. [16]
    P. Arnold, S. Iqbal and T. Rase, Strong- vs. weak-coupling pictures of jet quenching: a dry run using QED, arXiv:1810.06578 [INSPIRE].
  17. [17]
    G.D. Moore, Transport coefficients in large N f gauge theory: Testing hard thermal loops, JHEP 05 (2001) 039 [hep-ph/0104121] [INSPIRE].
  18. [18]
    A. Ipp, G.D. Moore and A. Rebhan, Comment on and erratum toPressure of hot QCD at large N f’, JHEP 01 (2003) 037 [hep-ph/0301057] [INSPIRE].
  19. [19]
    G.D. Moore, Pressure of hot QCD at large N f, JHEP 10 (2002) 055 [hep-ph/0209190] [INSPIRE].
  20. [20]
    B.G. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].
  21. [21]
    B.G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].
  22. [22]
    G. Beuf, Dipole factorization for DIS at NLO: Loop correction to the \( {\gamma}_{T,L}^{*}\to q\overline{q} \) light-front wave functions, Phys. Rev. D 94 (2016) 054016 [arXiv:1606.00777] [INSPIRE].ADSGoogle Scholar
  23. [23]
    G. Beuf, Dipole factorization for DIS at NLO: Combining the \( q\overline{q} \) and \( q\overline{q}g \) contributions, Phys. Rev. D 96 (2017) 074033 [arXiv:1708.06557] [INSPIRE].ADSGoogle Scholar
  24. [24]
    T. Lappi and R. Paatelainen, The one loop gluon emission light cone wave function, Annals Phys. 379 (2017) 34 [arXiv:1611.00497] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    H. Hänninen, T. Lappi and R. Paatelainen, One-loop corrections to light cone wave functions: the dipole picture DIS cross section, Annals Phys. 393 (2018) 358 [arXiv:1711.08207] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  27. [27]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, The Landau-Pomeranchuk-Migdal effect in QED, Nucl. Phys. B 478 (1996) 577 [hep-ph/9604327] [INSPIRE].
  28. [28]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].
  29. [29]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and p -broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].
  30. [30]
    P.B. Arnold and W. Xiao, High-energy jet quenching in weakly-coupled quark-gluon plasmas, Phys. Rev. D 78 (2008) 125008 [arXiv:0810.1026] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Caron-Huot, O(g) plasma effects in jet quenching, Phys. Rev. D 79 (2009) 065039 [arXiv:0811.1603] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Peshier, QCD running coupling and collisional jet quenching, J. Phys. G 35 (2008) 044028 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P.B. Arnold, Simple Formula for High-Energy Gluon Bremsstrahlung in a Finite, Expanding Medium, Phys. Rev. D 79 (2009) 065025 [arXiv:0808.2767] [INSPIRE].ADSGoogle Scholar
  34. [34]
    T. Liou, A.H. Mueller and B. Wu, Radiative p -broadening of high-energy quarks and gluons in QCD matter, Nucl. Phys. A 916 (2013) 102 [arXiv:1304.7677] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Klein, Suppression of Bremsstrahlung and pair production due to environmental factors, Rev. Mod. Phys. 71 (1999) 1501 [hep-ph/9802442] [INSPIRE].
  36. [36]
    S. Catani and M. Grazzini, Collinear factorization and splitting functions for next-to-next-to-leading order QCD calculations, Phys. Lett. B 446 (1999) 143 [hep-ph/9810389] [INSPIRE].
  37. [37]
    G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].
  38. [38]
    I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 4th corrected and enlarged edition, Academic Press (1980).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of VirginiaCharlottesvilleU.S.A.
  2. 2.National Centre for PhysicsQuaid-i-Azam University CampusIslamabadPakistan

Personalised recommendations