Advertisement

Journal of High Energy Physics

, 2018:119 | Cite as

Mock modularity from black hole scattering states

  • Sameer MurthyEmail author
  • Boris Pioline
Open Access
Regular Article - Theoretical Physics

Abstract

The exact degeneracies of quarter-BPS dyons in Type II string theory on K3 × T2 are given by Fourier coefficients of the inverse of the Igusa cusp form. For a fixed magnetic charge invariant m, the generating function of these degeneracies naturally decomposes as a sum of two parts, which are supposed to account for single-centered black holes, and two-centered black hole bound states, respectively. The decomposition is such that each part is separately modular covariant but neither is holomorphic, calling for a physical interpretation of the non-holomorphy. We resolve this puzzle by computing the supersymmetric index of the quantum mechanics of two-centered half-BPS black-holes, which we model by geodesic motion on Taub-NUT space subject to a certain potential. We compute a suitable index using localization methods, and find that it includes both a temperature-independent contribution from BPS bound states, as well as a temperature-dependent contribution due to a spectral asymmetry in the continuum of scattering states. The continuum contribution agrees precisely with the non-holomorphic completion term required for the modularity of the generating function of two-centered black hole bound states.

Keywords

Black Holes in String Theory Supersymmetry and Duality Solitons Monopoles and Instantons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Sen, Extremal black holes and elementary string states, Mod. Phys. Lett. A 10 (1995) 2081 [hep-th/9504147] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    I. Mandal and A. Sen, Black hole microstate counting and its macroscopic counterpart, Nucl. Phys. Proc. Suppl. 216 (2011) 147 [arXiv:1008.3801] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Sen, Quantum entropy function from AdS 2 /CFT 1 correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Dabholkar, J. Gomes and S. Murthy, Localization &a exact holography, JHEP 04 (2013) 062 [arXiv:1111.1161] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Dabholkar, J. Gomes and S. Murthy, Nonperturbative black hole entropy and Kloosterman sums, JHEP 03 (2015) 074 [arXiv:1404.0033] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Sen, Arithmetic of quantum entropy function, JHEP 08 (2009) 068 [arXiv:0903.1477] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    A. Dabholkar, J. Gomes, S. Murthy and A. Sen, Supersymmetric index from black hole entropy, JHEP 04 (2011) 034 [arXiv:1009.3226] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J.M. Maldacena, G.W. Moore and A. Strominger, Counting BPS black holes in toroidal Type II string theory, hep-th/9903163 [INSPIRE].
  11. [11]
    D. Shih, A. Strominger and X. Yin, Counting dyons in N = 8 string theory, JHEP 06 (2006) 037 [hep-th/0506151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    D. Shih and X. Yin, Exact black hole degeneracies and the topological string, JHEP 04 (2006) 034 [hep-th/0508174] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    B. Pioline, BPS black hole degeneracies and minimal automorphic representations, JHEP 08 (2005) 071 [hep-th/0506228] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    M. Eichler and D. Zagier, The theory of Jacobi forms, Progress in Mathematics volume 55, Birkhäuser Boston Inc., U.S.A. (1985).Google Scholar
  15. [15]
    N. Banerjee, D.P. Jatkar and A. Sen, Asymptotic expansion of the N = 4 dyon degeneracy, JHEP 05 (2009) 121 [arXiv:0810.3472] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S. Murthy and B. Pioline, A Farey tale for N = 4 dyons, JHEP 09 (2009) 022 [arXiv:0904.4253] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Dabholkar, J. Gomes and S. Murthy, Quantum black holes, localization and the topological string, JHEP 06 (2011) 019 [arXiv:1012.0265] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A. Sen, Walls of marginal stability and dyon spectrum in N = 4 supersymmetric string theories, JHEP 05 (2007) 039 [hep-th/0702141] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    A. Dabholkar, M. Guica, S. Murthy and S. Nampuri, No entropy enigmas for N = 4 dyons, JHEP 06 (2010) 007 [arXiv:0903.2481] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A. Dabholkar, S. Murthy and D. Zagier, Quantum black holes, wall crossing and Mock modular forms, arXiv:1208.4074 [INSPIRE].
  21. [21]
    S. Zwegers, Mock theta functions, Ph.D. thesis, 2008. arXiv:0807.4834 [INSPIRE].
  22. [22]
    K. Bringmann and K. Ono, Coefficients of harmonic Maass forms, in the proceedings of the in 2008 University of Florida Conference on Partitions, q-series, and modular forms, Gainesville, U.S.A. (2008).Google Scholar
  23. [23]
    K. Bringmann and K. Mahlburg, An extension of the Hardy-Ramanujan circle method and applications to partitions without sequences, Amer, J. Math. 133 (2011) 1151.Google Scholar
  24. [24]
    K. Bringmann and J. Manschot, From sheaves on P 2 to a generalization of the Rademacher expansion, Am. J. Math. 135 (2013) 1039 [arXiv:1006.0915] [INSPIRE].CrossRefzbMATHGoogle Scholar
  25. [25]
    S. Murthy and V. Reys, Single-centered black hole microstate degeneracies from instantons in supergravity, JHEP 04 (2016) 052 [arXiv:1512.01553] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  26. [26]
    F. Ferrari and V. Reys, Mixed Rademacher and BPS black holes, JHEP 07 (2017) 094 [arXiv:1702.02755] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    J. Manschot, Stability and duality in N = 2 supergravity, Commun. Math. Phys. 299 (2010) 651 [arXiv:0906.1767] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    S. Alexandrov, S. Banerjee, J. Manschot and B. Pioline, Multiple D3-instantons and mock modular forms I, Commun. Math. Phys. 353 (2017) 379 [arXiv:1605.05945] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    J. Manschot, Wall-crossing of D4-branes using flow trees, Adv. Theor. Math. Phys. 15 (2011) 1 [arXiv:1003.1570] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    S. Alexandrov and B. Pioline, Black holes and higher depth Mock modular forms, to appear.Google Scholar
  31. [31]
    S. Alexandrov, G.W. Moore, A. Neitzke and B. Pioline, ℝ3 Index for Four-Dimensional N = 2 Field Theories, Phys. Rev. Lett. 114 (2015) 121601 [arXiv:1406.2360] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    B. Pioline, Wall-crossing made smooth, JHEP 04 (2015) 092 [arXiv:1501.01643] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    A. Font, L.E. Ibáñez, D. Lüst and F. Quevedo, Strong-weak coupling duality and nonperturbative effects in string theory, Phys. Lett. B 249 (1990) 35 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Sen, Strong-weak coupling duality in four-dimensional string theory, Int. J. Mod. Phys. A 9 (1994) 3707 [hep-th/9402002] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Counting dyons in N = 4 string theory, Nucl. Phys. B 484 (1997) 543 [hep-th/9607026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    D. Shih, A. Strominger and X. Yin, Recounting Dyons in N = 4 string theory, JHEP 10 (2006) 087 [hep-th/0505094] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    J.R. David and A. Sen, CHL dyons and statistical entropy function from D1-D5 system, JHEP 11 (2006) 072 [hep-th/0605210] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    M.C.N. Cheng and E. Verlinde, Dying dyons dont count, JHEP 09 (2007) 070 [arXiv:0706.2363] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    S. Banerjee, A. Sen and Y.K. Srivastava, Genus two surface and quarter BPS dyons: the contour prescription, JHEP 03 (2009) 151 [arXiv:0808.1746] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    G. Bossard, C. Cosnier-Horeau and B. Pioline, Protected couplings and BPS dyons in half-maximal supersymmetric string vacua, Phys. Lett. B 765 (2017) 377 [arXiv:1608.01660] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    A. Dabholkar, D. Gaiotto and S. Nampuri, Comments on the spectrum of CHL dyons, JHEP 01 (2008) 023 [hep-th/0702150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    A. Dabholkar and J.A. Harvey, Nonrenormalization of the superstring tension, Phys. Rev. Lett. 63 (1989) 478 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Troost, The non-compact elliptic genus: mock or modular, JHEP 06 (2010) 104 [arXiv:1004.3649] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    T. Eguchi and Y. Sugawara, Non-holomorphic modular forms and SL(2, ℝ)/U(1) superconformal field theory, JHEP 03 (2011) 107 [arXiv:1012.5721] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    S.K. Ashok and J. Troost, A twisted non-compact elliptic genus, JHEP 03 (2011) 067 [arXiv:1101.1059] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    F. Denef, Quantum quivers and Hall/hole halos, JHEP 10 (2002) 023 [hep-th/0206072] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    S. Lee and P. Yi, Framed BPS states, moduli dynamics and wall-crossing, JHEP 04 (2011) 098 [arXiv:1102.1729] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    D. Bak, C.-k. Lee, K.-M. Lee and P. Yi, Low-energy dynamics for 1/4 BPS dyons, Phys. Rev. D 61 (2000) 025001 [hep-th/9906119] [INSPIRE].ADSMathSciNetGoogle Scholar
  49. [49]
    D. Bak, K.-M. Lee and P. Yi, Quantum 1/4 BPS dyons, Phys. Rev. D 61 (2000) 045003 [hep-th/9907090] [INSPIRE].ADSMathSciNetGoogle Scholar
  50. [50]
    E.J. Weinberg and P. Yi, Magnetic monopole dynamics, supersymmetry and duality, Phys. Rept. 438 (2007) 65 [hep-th/0609055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
  52. [52]
    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    M.F. Vignéras, Séries thêta des formes quadratiques indéfinies, Springer Lecture Notes 627 (1977) 227.CrossRefzbMATHGoogle Scholar
  54. [54]
    R. Kumar Gupta, S. Murthy and C. Nazaroglu, Squashed toric manifolds and higher depth Mock modular forms, arXiv:1808.00012 [INSPIRE].
  55. [55]
    J.P. Gauntlett, N. Kim, J. Park and P. Yi, Monopole dynamics and BPS dyons N = 2 superYang-Mills theories, Phys. Rev. D 61 (2000) 125012 [hep-th/9912082] [INSPIRE].ADSGoogle Scholar
  56. [56]
    T.D. Brennan, G.W. Moore and A.B. Royston, Wall crossing from Dirac zeromodes, JHEP 09 (2018) 038 [arXiv:1805.08783] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    L. Álvarez-Gaumé and D.Z. Freedman, Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model, Commun. Math. Phys. 80 (1981) 443 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    L. Álvarez-Gaumé and D.Z. Freedman, Potentials for the supersymmetric nonlinear σ-model, Commun. Math. Phys. 91 (1983) 87 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    J.A. Harvey, S. Lee and S. Murthy, Elliptic genera of ALE and ALF manifolds from gauged linear σ-models, JHEP 02 (2015) 110 [arXiv:1406.6342] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    M. Stern and P. Yi, Counting Yang-Mills dyons with index theorems, Phys. Rev. D 62 (2000) 125006 [hep-th/0005275] [INSPIRE].ADSMathSciNetGoogle Scholar
  61. [61]
    D. Tong, N S5-branes, T duality and world sheet instantons, JHEP 07 (2002) 013 [hep-th/0204186] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J.A. Harvey and S. Jensen, Worldsheet instanton corrections to the Kaluza-Klein monopole, JHEP 10 (2005) 028 [hep-th/0507204] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    G.W. Gibbons, P. Rychenkova and R. Goto, Hyper-Kähler quotient construction of BPS monopole moduli spaces, Commun. Math. Phys. 186 (1997) 585 [hep-th/9608085] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  64. [64]
    F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic genera of 2d \( \mathcal{N} \) = 2 gauge theories, Commun. Math. Phys. 333 (2015) 1241 [arXiv:1308.4896] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    K. Hori, H. Kim and P. Yi, Witten index and wall crossing, JHEP 01 (2015) 124 [arXiv:1407.2567] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, JHEP 07 (2015) 063 [Addendum ibid. 04 (2016) 094] [arXiv:1406.6793] [INSPIRE].
  67. [67]
    C. Cordova and S.-H. Shao, An index formula for supersymmetric quantum mechanics, arXiv:1406.7853 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of MathematicsKing’s College LondonLondonU.K.
  2. 2.Laboratoire de Physique Théorique et Hautes Energies (LPTHE), Sorbonne Université et CNRS UMR 7589ParisFrance

Personalised recommendations