Journal of High Energy Physics

, 2018:118 | Cite as

Dark matter from strong dynamics: the minimal theory of dark baryons

  • Anthony FrancisEmail author
  • Renwick J. Hudspith
  • Randy Lewis
  • Sean Tulin
Open Access
Regular Article - Theoretical Physics


As a simple model for dark matter, we propose a QCD-like theory based on SU(2) gauge theory with one flavor of dark quark. The model is confining at low energy and we use lattice simulations to investigate the properties of the lowest-lying hadrons. Compared to QCD, the theory has several peculiar differences: there are no Goldstone bosons or chiral symmetry restoration when the dark quark becomes massless; the usual global baryon number symmetry is enlarged to SU(2)B, resembling isospin; and baryons and mesons are unified together in SU(2)B iso-multiplets. We argue that the lightest baryon, a vector boson, is a stable dark matter candidate and is a composite realization of the hidden vector dark matter scenario. The model naturally includes a lighter state, the analog of the η′ in QCD, for dark matter to annihilate into to set the relic density via thermal freeze-out. Dark matter baryons may also be asymmetric, strongly self-interacting, or have their relic density set via 3 → 2 cannibalizing transitions. We discuss some experimental implications of coupling dark baryons to the Higgs portal.


Lattice field theory simulation Phenomenological Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  2. [2]
    J.L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [arXiv:1003.0904] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].
  4. [4]
    D.N. Spergel and P.J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [INSPIRE].
  5. [5]
    S. Tulin and H.-B. Yu, Dark matter self-interactions and small scale structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    J.M. Cline, Z. Liu, G. Moore and W. Xue, Composite strongly interacting dark matter, Phys. Rev. D 90 (2014) 015023 [arXiv:1312.3325] [INSPIRE].ADSGoogle Scholar
  7. [7]
    K.K. Boddy, J.L. Feng, M. Kaplinghat and T.M.P. Tait, Self-interacting dark matter from a non-abelian hidden sector, Phys. Rev. D 89 (2014) 115017 [arXiv:1402.3629] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Nussinov, Technocosmology: could a technibaryon excess provide anaturalmissing mass candidate?, Phys. Lett. B 165 (1985) 55.ADSCrossRefGoogle Scholar
  9. [9]
    R.S. Chivukula and T.P. Walker, Technicolor cosmology, Nucl. Phys. B 329 (1990) 445 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    Z. Chacko, H.-S. Goh and R. Harnik, The twin Higgs: natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].
  12. [12]
    R. Foot, Mirror dark matter: cosmology, galaxy structure and direct detection, Int. J. Mod. Phys. A 29 (2014) 1430013 [arXiv:1401.3965] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].ADSGoogle Scholar
  14. [14]
    R. Lewis, C. Pica and F. Sannino, Light asymmetric dark matter on the lattice: SU(2) technicolor with two fundamental flavors, Phys. Rev. D 85 (2012) 014504 [arXiv:1109.3513] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Hietanen, R. Lewis, C. Pica and F. Sannino, Composite Goldstone dark matter: experimental predictions from the lattice, JHEP 12 (2014) 130 [arXiv:1308.4130] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Lattice Strong Dynamics collaboration, T. Appelquist et al., Lattice calculation of composite dark matter form factors, Phys. Rev. D 88 (2013) 014502 [arXiv:1301.1693] [INSPIRE].
  17. [17]
    W. Detmold, M. McCullough and A. Pochinsky, Dark nuclei I: cosmology and indirect detection, Phys. Rev. D 90 (2014) 115013 [arXiv:1406.2276] [INSPIRE].ADSGoogle Scholar
  18. [18]
    W. Detmold, M. McCullough and A. Pochinsky, Dark nuclei II: nuclear spectroscopy in two-color QCD, Phys. Rev. D 90 (2014) 114506 [arXiv:1406.4116] [INSPIRE].ADSGoogle Scholar
  19. [19]
    Lattice Strong Dynamics (LSD) collaboration, T. Appelquist et al., Composite bosonic baryon dark matter on the lattice: SU(4) baryon spectrum and the effective Higgs interaction, Phys. Rev. D 89 (2014) 094508 [arXiv:1402.6656] [INSPIRE].
  20. [20]
    T. Appelquist et al., Stealth dark matter: dark scalar baryons through the Higgs portal, Phys. Rev. D 92 (2015) 075030 [arXiv:1503.04203] [INSPIRE].ADSGoogle Scholar
  21. [21]
    T. Appelquist et al., Detecting stealth dark matter directly through electromagnetic polarizability, Phys. Rev. Lett. 115 (2015) 171803 [arXiv:1503.04205] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Francis, R.J. Hudspith, R. Lewis and S. Tulin, Dark matter from one-flavor SU(2) gauge theory, PoS(LATTICE 2016)227 [arXiv:1610.10068] [INSPIRE].
  23. [23]
    G.D. Kribs and E.T. Neil, Review of strongly-coupled composite dark matter models and lattice simulations, Int. J. Mod. Phys. A 31 (2016) 1643004 [arXiv:1604.04627] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    E. Witten, An SU(2) anomaly, Phys. Lett. B 117 (1982) 324.ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett. B 683 (2010) 39 [arXiv:0907.1007] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    E. Marinari, G. Parisi and C. Rebbi, Computer estimates of meson masses in SU(2) lattice gauge theory, Phys. Rev. Lett. 47 (1981) 1795 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.B. Kogut et al., Chiral symmetry restoration in baryon rich environments, Nucl. Phys. B 225 (1983) 93 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Nakamura, Quarks and gluons at finite temperature and density, Phys. Lett. B 149 (1984) 391.ADSCrossRefGoogle Scholar
  29. [29]
    L. von Smekal, Universal aspects of QCD-like theories, Nucl. Phys. Proc. Suppl. 228 (2012) 179 [arXiv:1205.4205] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Creutz, One flavor QCD, Annals Phys. 322 (2007) 1518 [hep-th/0609187] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    R.J. Scherrer and M.S. Turner, On the relic, cosmic abundance of stable weakly interacting massive particles, Phys. Rev. D 33 (1986) 1585 [Erratum ibid. D 34 (1986) 3263] [INSPIRE].
  32. [32]
    K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    K.M. Zurek, Asymmetric dark matter: theories, signatures and constraints, Phys. Rept. 537 (2014) 91 [arXiv:1308.0338] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    Z.G. Berezhiani, A.D. Dolgov and R.N. Mohapatra, Asymmetric inflationary reheating and the nature of mirror universe, Phys. Lett. B 375 (1996) 26 [hep-ph/9511221] [INSPIRE].
  35. [35]
    E. Kuflik, M. Perelstein, N. R.-L. Lorier and Y.-D. Tsai, Elastically decoupling dark matter, Phys. Rev. Lett. 116 (2016) 221302 [arXiv:1512.04545] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    E.D. Carlson, M.E. Machacek and L.J. Hall, Self-interacting dark matter, Astrophys. J. 398 (1992) 43 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    N. Bernal et al., Production regimes for self-interacting dark matter, JCAP 03 (2016) 018 [arXiv:1510.08063] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S.-M. Choi et al., Vector SIMP dark matter, JHEP 10 (2017) 162 [arXiv:1707.01434] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M.A. Clark and A.D. Kennedy, Accelerating dynamical fermion computations using the Rational Hybrid Monte Carlo (RHMC) algorithm with multiple pseudofermion fields, Phys. Rev. Lett. 98 (2007) 051601 [hep-lat/0608015] [INSPIRE].
  40. [40]
    S. Bernardson, P. McCarty and C. Thron, Monte Carlo methods for estimating linear combinations of inverse matrix entries in lattice QCD, Comput. Phys. Commun. 78 (1993) 256 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    P.A. Boyle, A. Juttner, C. Kelly and R.D. Kenway, Use of stochastic sources for the lattice determination of light quark physics, JHEP 08 (2008) 086 [arXiv:0804.1501] [INSPIRE].Google Scholar
  42. [42]
    K. Bitar et al., The QCD finite temperature transition and hybrid monte carlo, Nucl. Phys. B 313 (1989) 348 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    G.S. Bali, S. Collins and A. Schafer, Effective noise reduction techniques for disconnected loops in Lattice QCD, Comput. Phys. Commun. 181 (2010) 1570 [arXiv:0910.3970] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    R. Arthur et al., SU(2) gauge theory with two fundamental flavours: scalar and pseudoscalar spectrum, arXiv:1607.06654 [INSPIRE].
  45. [45]
    L. Del Debbio, M.T. Frandsen, H. Panagopoulos and F. Sannino, Higher representations on the lattice: Perturbative studies, JHEP 06 (2008) 007 [arXiv:0802.0891] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Hietanen, R. Lewis, C. Pica and F. Sannino, Fundamental composite higgs dynamics on the lattice: SU(2) with two flavors, JHEP 07 (2014) 116 [arXiv:1404.2794] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    G.S. Bali, QCD forces and heavy quark bound states, Phys. Rept. 343 (2001) 1 [hep-ph/0001312] [INSPIRE].
  48. [48]
    Y. Schröder, The static potential in QCD to two loops, Phys. Lett. B 447 (1999) 321 [hep-ph/9812205] [INSPIRE].
  49. [49]
    C.W. Bernard et al., The static quark potential in three flavor QCD, Phys. Rev. D 62 (2000) 034503 [hep-lat/0002028] [INSPIRE].
  50. [50]
    E. Eichten et al., The spectrum of charmonium, Phys. Rev. Lett. 34 (1975) 369 [Erratum ibid. 36 (1976) 1276] [INSPIRE].
  51. [51]
    T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP dark matter overcome the nightmare scenario?, Phys. Rev. D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].ADSGoogle Scholar
  53. [53]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S. Baek, P. Ko, W.-I. Park and E. Senaha, Higgs portal vector dark matter: revisited, JHEP 05 (2013) 036 [arXiv:1212.2131] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Hoferichter, P. Klos, J. Menéndez and A. Schwenk, Improved limits for Higgs-portal dark matter from LHC searches, Phys. Rev. Lett. 119 (2017) 181803 [arXiv:1708.02245] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    XENON collaboration, E. Aprile et al., Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  58. [58]
    ATLAS collaboration, Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector, JHEP 11 (2015) 206 [arXiv:1509.00672] [INSPIRE].
  59. [59]
    CMS collaboration, Searches for invisible decays of the Higgs boson in pp collisions at \( \sqrt{s}=7 \) , 8 and 13 TeV, JHEP 02 (2017) 135 [arXiv:1610.09218] [INSPIRE].
  60. [60]
    T.R. Slatyer and C.-L. Wu, General constraints on dark matter decay from the Cosmic Microwave Background, Phys. Rev. D 95 (2017) 023010 [arXiv:1610.06933] [INSPIRE].ADSGoogle Scholar
  61. [61]
    K. Jedamzik, Big Bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].
  62. [62]
    A. Fradette and M. Pospelov, BBN for the LHC: constraints on lifetimes of the Higgs portal scalars, Phys. Rev. D 96 (2017) 075033 [arXiv:1706.01920] [INSPIRE].ADSGoogle Scholar
  63. [63]
    F. Bezrukov and D. Gorbunov, Light inflaton hunters guide, JHEP 05 (2010) 010 [arXiv:0912.0390] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  64. [64]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].
  65. [65]
    A.B. Newman et al., The density profiles of massive, relaxed galaxy clusters: I. The total density over 3 decades in radius, Astrophys. J. 765 (2013) 24 [arXiv:1209.1391] [INSPIRE].
  66. [66]
    A.B. Newman, T. Treu, R.S. Ellis and D.J. Sand, The density profiles of massive, relaxed galaxy clusters: II. Separating luminous and dark matter in cluster cores, Astrophys. J. 765 (2013) 25 [arXiv:1209.1392] [INSPIRE].
  67. [67]
    M. Kaplinghat, S. Tulin and H.-B. Yu, Dark matter halos as particle colliders: unified solution to small-scale structure puzzles from dwarfs to clusters, Phys. Rev. Lett. 116 (2016) 041302 [arXiv:1508.03339] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    O.D. Elbert et al., A testable conspiracy: simulating baryonic effects on self-interacting dark matter halos, Astrophys. J. 853 (2018) 109 [arXiv:1609.08626] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    S.W. Randall et al., Constraints on the self-interaction cross-section of dark matter from numerical simulations of the merging galaxy cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A. Robertson, R. Massey and V. Eke, What does the bullet cluster tell us about self-interacting dark matter?, Mon. Not. Roy. Astron. Soc. 465 (2017) 569 [arXiv:1605.04307] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    E. Braaten and H.W. Hammer, Universal two-body physics in dark matter near an S-wave resonance, Phys. Rev. D 88 (2013) 063511 [arXiv:1303.4682] [INSPIRE].ADSGoogle Scholar
  72. [72]
    S. Tulin, H.-B. Yu and K.M. Zurek, Resonant dark forces and small scale structure, Phys. Rev. Lett. 110 (2013) 111301 [arXiv:1210.0900] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    S. Tulin, H.-B. Yu and K.M. Zurek, Beyond collisionless dark matter: particle physics dynamics for dark matter halo structure, Phys. Rev. D 87 (2013) 115007 [arXiv:1302.3898] [INSPIRE].ADSGoogle Scholar
  74. [74]
    L. Del Debbio, A. Patella and C. Pica, Higher representations on the lattice: Numerical simulations. SU(2) with adjoint fermions, Phys. Rev. D 81 (2010) 094503 [arXiv:0805.2058] [INSPIRE].
  75. [75]
    A. Hasenfratz and F. Knechtli, Flavor symmetry and the static potential with hypercubic blocking, Phys. Rev. D 64 (2001) 034504 [hep-lat/0103029] [INSPIRE].
  76. [76]
    P. Di Vecchia and G. Veneziano, Chiral dynamics in the large N limit, Nucl. Phys. B 171 (1980) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    W. Bietenholz, P. de Forcrand and U. Gerber, Topological susceptibility from slabs, JHEP 12 (2015) 070 [arXiv:1509.06433] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  78. [78]
    JLQCD collaboration, S. Aoki et al., Topological susceptibility of QCD with dynamical Möbius domain-wall fermions, PTEP 2018 (2018) 043B07 [arXiv:1705.10906] [INSPIRE].
  79. [79]
    R. Narayanan and H. Neuberger, Infinite N phase transitions in continuum Wilson loop operators, JHEP 03 (2006) 064 [hep-th/0601210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. [80]
    M. Lüscher, Trivializing maps, the Wilson flow and the HMC algorithm, Commun. Math. Phys. 293 (2010) 899 [arXiv:0907.5491] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  81. [81]
    S. Borsányi et al., High-precision scale setting in lattice QCD, JHEP 09 (2012) 010 [arXiv:1203.4469] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    M. Cè, M. García Vera, L. Giusti and S. Schaefer, The topological susceptibility in the large-N limit of SU(N) Yang-Mills theory, Phys. Lett. B 762 (2016) 232 [arXiv:1607.05939] [INSPIRE].
  83. [83]
    T. DeGrand, Simple chromatic properties of gradient flow, Phys. Rev. D 95 (2017) 114512 [arXiv:1701.00793] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Theoretical Physics Department, CERNGeneva 23Switzerland
  2. 2.Department of Physics and AstronomyYork UniversityTorontoCanada

Personalised recommendations