Advertisement

Journal of High Energy Physics

, 2018:115 | Cite as

Revisiting the asymptotic dynamics of General Relativity on AdS3

  • Hernán A. González
  • Javier Matulich
  • Miguel PinoEmail author
  • Ricardo Troncoso
Open Access
Regular Article - Theoretical Physics

Abstract

The dual dynamics of Einstein gravity on AdS3 supplemented with boundary conditions of KdV-type is identified. It corresponds to a two-dimensional field theory at the boundary, described by a novel action principle whose field equations are given by two copies of the “potential modified KdV” equation. The asymptotic symmetries then transmute into the global Noether symmetries of the dual action, giving rise to an infinite set of commuting conserved charges, implying the integrability of the system. Noteworthy, the theory at the boundary is non-relativistic and possesses anisotropic scaling of Lifshitz type.

Keywords

Conformal and W Symmetry Space-Time Symmetries Gauge-gravity correspondence Integrable Hierarchies 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    O. Coussaert, M. Henneaux and P. van Driel, The Asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [INSPIRE].
  3. [3]
    M. Henneaux, L. Maoz and A. Schwimmer, Asymptotic dynamics and asymptotic symmetries of three-dimensional extended AdS supergravity, Annals Phys. 282 (2000) 31 [hep-th/9910013] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    G. Barnich, H.A. González and P. Salgado-Rebolledo, Geometric actions for three-dimensional gravity, Class. Quant. Grav. 35 (2018) 014003 [arXiv:1707.08887] [INSPIRE].
  5. [5]
    J. Cotler and K. Jensen, A theory of reparameterizations for AdS 3 gravity, arXiv:1808.03263 [INSPIRE].
  6. [6]
    A. Pérez, D. Tempo and R. Troncoso, Boundary conditions for General Relativity on AdS 3 and the KdV hierarchy, JHEP 06 (2016) 103 [arXiv:1605.04490] [INSPIRE].
  7. [7]
    A. Achucarro and P.K. Townsend, A Chern-Simons Action for Three-Dimensional anti-de Sitter Supergravity Theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].
  8. [8]
    E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [INSPIRE].
  9. [9]
    P. Forgacs, A. Wipf, J. Balog, L. Feher and L. O’Raifeartaigh, Liouville and Toda Theories as Conformally Reduced WZNW Theories, Phys. Lett. B 227 (1989) 214 [INSPIRE].
  10. [10]
    A. Alekseev and S.L. Shatashvili, Path Integral Quantization of the Coadjoint Orbits of the Virasoro Group and 2D Gravity, Nucl. Phys. B 323 (1989) 719 [INSPIRE].
  11. [11]
    M. Henneaux, A. Pérez, D. Tempo and R. Troncoso, Chemical potentials in three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2013) 048 [arXiv:1309.4362] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C. Bunster, M. Henneaux, A. Pérez, D. Tempo and R. Troncoso, Generalized Black Holes in Three-dimensional Spacetime, JHEP 05 (2014) 031 [arXiv:1404.3305] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    I.M. Gelfand and L.A. Dikii, Asymptotic behavior of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations, Russ. Math. Surveys 30 (1975) 77 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    T. Regge and C. Teitelboim, Role of Surface Integrals in the Hamiltonian Formulation of General Relativity, Annals Phys. 88 (1974) 286 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
  17. [17]
    M. Rooman and P. Spindel, Holonomies, anomalies and the Fefferman-Graham ambiguity in AdS 3 gravity, Nucl. Phys. B 594 (2001) 329 [hep-th/0008147] [INSPIRE].
  18. [18]
    G. Barnich and H.A. González, Dual dynamics of three dimensional asymptotically flat Einstein gravity at null infinity, JHEP 05 (2013) 016 [arXiv:1303.1075] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    G. Barnich and G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav. 24 (2007) F15 [gr-qc/0610130] [INSPIRE].
  20. [20]
    E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the Canonical Quantization of the Chern-Simons-Witten Theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].
  22. [22]
    P.J. Olver, Applications of Lie groups to differential equations, vol. 107, Springer Science & Business Media (2000).Google Scholar
  23. [23]
    J.P. Wang, A list of 1 + 1 dimensional integrable equations and their properties, J. Nonlinear Math. Phys. 9 (2002) 213.Google Scholar
  24. [24]
    R. Floreanini and R. Jackiw, Selfdual Fields as Charge Density Solitons, Phys. Rev. Lett. 59 (1987) 1873 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    H.A. González, D. Tempo and R. Troncoso, Field theories with anisotropic scaling in 2D, solitons and the microscopic entropy of asymptotically Lifshitz black holes, JHEP 11 (2011) 066 [arXiv:1107.3647] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M. Taylor, Lifshitz holography, Class. Quant. Grav. 33 (2016) 033001 [arXiv:1512.03554] [INSPIRE].
  28. [28]
    H.P. McKean and P. van Moerbeke, The spectrum of hill’s equation, Invent. Math. 30 (1975) 217.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    B.A. Dubrovin, V.B. Matveev and S.P. Novikov, Non-linear equations of Korteweg-De Vries type, finite-zone linear operators, and abelian varieties, Russ. Math. Surv. 31 (1976) 59.Google Scholar
  30. [30]
    M. Rangamani, Gravity and Hydrodynamics: Lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    V.E. Hubeny, The Fluid/Gravity Correspondence: a new perspective on the Membrane Paradigm, Class. Quant. Grav. 28 (2011) 114007 [arXiv:1011.4948] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier-Stokes To Einstein, JHEP 07 (2012) 146 [arXiv:1101.2451] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    H. Afshar et al., Soft Heisenberg hair on black holes in three dimensions, Phys. Rev. D 93 (2016) 101503 [arXiv:1603.04824] [INSPIRE].
  34. [34]
    H. Afshar, D. Grumiller, W. Merbis, A. Pérez, D. Tempo and R. Troncoso, Soft hairy horizons in three spacetime dimensions, Phys. Rev. D 95 (2017) 106005 [arXiv:1611.09783] [INSPIRE].
  35. [35]
    O. Fuentealba et al., Integrable systems with BM S 3 Poisson structure and the dynamics of locally flat spacetimes, JHEP 01 (2018) 148 [arXiv:1711.02646] [INSPIRE].
  36. [36]
    D. Melnikov, F. Novaes, A. Pérez and R. Troncoso, Lifshitz Scaling, Microstate Counting from Number Theory and Black Hole Entropy, arXiv:1808.04034 [INSPIRE].
  37. [37]
    G. Compère and W. Song, \( \mathcal{W} \) symmetry and integrability of higher spin black holes, JHEP 09 (2013) 144 [arXiv:1306.0014] [INSPIRE].
  38. [38]
    M. Gutperle and Y. Li, Higher Spin Lifshitz Theory and Integrable Systems, Phys. Rev. D 91 (2015) 046012 [arXiv:1412.7085] [INSPIRE].
  39. [39]
    M. Beccaria, M. Gutperle, Y. Li and G. Macorini, Higher spin Lifshitz theories and the Korteweg-de Vries hierarchy, Phys. Rev. D 92 (2015) 085005 [arXiv:1504.06555] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute for Theoretical Physics, TU WienViennaAustria
  2. 2.Université Libre de Bruxelles and International Solvay InstitutesBrusselsBelgium
  3. 3.Departamento de Física, Universidad de Santiago de ChileSantiagoChile
  4. 4.Centro de Estudios Científicos (CECs)ValdiviaChile

Personalised recommendations