Journal of High Energy Physics

, 2018:111 | Cite as

Assessing perturbativity and vacuum stability in high-scale leptogenesis

  • Seyda Ipek
  • Alexis D. Plascencia
  • Jessica TurnerEmail author
Open Access
Regular Article - Theoretical Physics


We consider the requirements that all coupling constants remain perturbative and the electroweak vacuum metastable up to the Planck scale in high-scale thermal leptogenesis, in the context of a type-I seesaw mechanism. We find a large region of the model parameter space that satisfies these conditions in combination with producing the baryon asymmetry of the Universe. We demonstrate these conditions require Tr[Y N YN] ≲ 0.66 on the neutrino Yukawa matrix. We also investigate this scenario in the presence of a large number NF of coloured Majorana octet fermions in order to make quantum chromodynamics asymptotically safe in the ultraviolet.


Beyond Standard Model Cosmology of Theories beyond the SM Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  2. [2]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
  3. [3]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
  4. [4]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].
  6. [6]
    J.A. Casas, V. Di Clemente, A. Ibarra and M. Quirós, Massive neutrinos and the Higgs mass window, Phys. Rev. D 62 (2000) 053005 [hep-ph/9904295] [INSPIRE].
  7. [7]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto and A. Strumia, Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].
  8. [8]
    C.-S. Chen and Y. Tang, Vacuum stability, neutrinos and dark matter, JHEP 04 (2012) 019 [arXiv:1202.5717] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    W. Rodejohann and H. Zhang, Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability, JHEP 06 (2012) 022 [arXiv:1203.3825] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Bambhaniya, P. Bhupal Dev, S. Goswami, S. Khan and W. Rodejohann, Naturalness, vacuum stability and leptogenesis in the minimal seesaw model, Phys. Rev. D 95 (2017) 095016 [arXiv:1611.03827] [INSPIRE].
  11. [11]
    P. Ghosh, A.K. Saha and A. Sil, Study of electroweak vacuum stability from extended Higgs portal of dark matter and neutrinos, Phys. Rev. D 97 (2018) 075034 [arXiv:1706.04931] [INSPIRE].
  12. [12]
    G. Ballesteros, J. Redondo, A. Ringwald and C. Tamarit, Standard Model-axion-seesaw-Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke, JCAP 08 (2017) 001 [arXiv:1610.01639] [INSPIRE].
  13. [13]
    A. Salvio, A simple motivated completion of the Standard Model below the Planck scale: axions and right-handed neutrinos, Phys. Lett. B 743 (2015) 428 [arXiv:1501.03781] [INSPIRE].
  14. [14]
    A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [INSPIRE].
  15. [15]
    F. Vissani, Do experiments suggest a hierarchy problem?, Phys. Rev. D 57 (1998) 7027 [hep-ph/9709409] [INSPIRE].
  16. [16]
    M. Farina, D. Pappadopulo and A. Strumia, A modified naturalness principle and its experimental tests, JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S. Khan, S. Goswami and S. Roy, Vacuum stability constraints on the minimal singlet TeV seesaw model, Phys. Rev. D 89 (2014) 073021 [arXiv:1212.3694] [INSPIRE].
  18. [18]
    L. Delle Rose, C. Marzo and A. Urbano, On the stability of the electroweak vacuum in the presence of low-scale seesaw models, JHEP 12 (2015) 050 [arXiv:1506.03360] [INSPIRE].Google Scholar
  19. [19]
    M. Lindner, H.H. Patel and B. Radovčić, Electroweak absolute, meta- and thermal stability in neutrino mass models, Phys. Rev. D 93 (2016) 073005 [arXiv:1511.06215] [INSPIRE].
  20. [20]
    L. Di Luzio, R. Gröber and M. Spannowsky, Maxi-sizing the trilinear Higgs self-coupling: how large could it be?, Eur. Phys. J. C 77 (2017) 788 [arXiv:1704.02311] [INSPIRE].
  21. [21]
    S. Yu. Khlebnikov and M.E. Shaposhnikov, The statistical theory of anomalous fermion number nonconservation, Nucl. Phys. B 308 (1988) 885 [INSPIRE].
  22. [22]
    S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].
  23. [23]
    K. Moffat, S. Pascoli, S.T. Petcov, H. Schulz and J. Turner, Three-flavored nonresonant leptogenesis at intermediate scales, Phys. Rev. D 98 (2018) 015036 [arXiv:1804.05066] [INSPIRE].
  24. [24]
    K. Agashe, P. Du, M. Ekhterachian, C.S. Fong, S. Hong and L. Vecchi, Hybrid seesaw leptogenesis and TeV singlets, Phys. Lett. B 785 (2018) 489 [arXiv:1804.06847] [INSPIRE].
  25. [25]
    W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Annals Phys. 315 (2005)305 [hep-ph/0401240] [INSPIRE].
  26. [26]
    W. Buchmüller, P. Di Bari and M. Plümacher, Cosmic microwave background, matter-antimatter asymmetry and neutrino masses, Nucl. Phys. B 643 (2002) 367 [Erratum ibid. B 793 (2008) 362] [hep-ph/0205349] [INSPIRE].
  27. [27]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].
  28. [28]
    S.M. Bilenky, J. Hosek and S.T. Petcov, On oscillations of neutrinos with Dirac and Majorana masses, Phys. Lett. B 94 (1980) 495 [INSPIRE].
  29. [29]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
  30. [30]
    E. Molinaro and S.T. Petcov, The interplay between the ‘low’ and ‘high’ energy CP-violation in leptogenesis, Eur. Phys. J. C 61 (2009) 93 [arXiv:0803.4120] [INSPIRE].
  31. [31]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017)087 [arXiv:1611.01514] [INSPIRE].
  32. [32]
    A. Ibarra and G.G. Ross, Neutrino phenomenology: the case of two right-handed neutrinos, Phys. Lett. B 591 (2004) 285 [hep-ph/0312138] [INSPIRE].
  33. [33]
    S. Antusch, P. Di Bari, D.A. Jones and S.F. King, Leptogenesis in the two right-handed neutrino model revisited, Phys. Rev. D 86 (2012) 023516 [arXiv:1107.6002] [INSPIRE].
  34. [34]
    S. Blanchet, Dirac phase leptogenesis, J. Phys. Conf. Ser. 120 (2008) 022007 [arXiv:0710.0570] [INSPIRE].
  35. [35]
    P.H. Frampton, S.L. Glashow and T. Yanagida, Cosmological sign of neutrino CP-violation, Phys. Lett. B 548 (2002) 119 [hep-ph/0208157] [INSPIRE].
  36. [36]
    S.F. King, Leptogenesis MNS link in unified models with natural neutrino mass hierarchy, Phys. Rev. D 67 (2003) 113010 [hep-ph/0211228] [INSPIRE].
  37. [37]
    P.H. Chankowski and K. Turzynski, Limits on T reh for thermal leptogenesis with hierarchical neutrino masses, Phys. Lett. B 570 (2003) 198 [hep-ph/0306059] [INSPIRE].
  38. [38]
    A. Abada, S. Davidson, A. Ibarra, F.X. Josse-Michaux, M. Losada and A. Riotto, Flavour matters in leptogenesis, JHEP 09 (2006) 010 [hep-ph/0605281] [INSPIRE].
  39. [39]
    S. Antusch, S.F. King and A. Riotto, Flavour-dependent leptogenesis with sequential dominance, JCAP 11 (2006) 011 [hep-ph/0609038] [INSPIRE].
  40. [40]
    E. Molinaro and S.T. Petcov, A case of subdominant/suppressed ‘high energy’ contribution to the baryon asymmetry of the universe in flavoured leptogenesis, Phys. Lett. B 671 (2009) 60 [arXiv:0808.3534] [INSPIRE].
  41. [41]
    A. Anisimov, S. Blanchet and P. Di Bari, Viability of Dirac phase leptogenesis, JCAP 04 (2008) 033 [arXiv:0707.3024] [INSPIRE].
  42. [42]
    S. Blanchet, P. Di Bari, D.A. Jones and L. Marzola, Leptogenesis with heavy neutrino flavours: from density matrix to Boltzmann equations, JCAP 01 (2013) 041 [arXiv:1112.4528] [INSPIRE].
  43. [43]
    R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Baryogenesis through leptogenesis, Nucl. Phys. B 575 (2000) 61 [hep-ph/9911315] [INSPIRE].
  44. [44]
    A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavor issues in leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [INSPIRE].
  45. [45]
    A. De Simone and A. Riotto, On the impact of flavour oscillations in leptogenesis, JCAP 02 (2007) 005 [hep-ph/0611357] [INSPIRE].
  46. [46]
    S. Blanchet, P. Di Bari and G.G. Raffelt, Quantum Zeno effect and the impact of flavor in leptogenesis, JCAP 03 (2007) 012 [hep-ph/0611337] [INSPIRE].
  47. [47]
    R. Cooke, M. Pettini, R.A. Jorgenson, M.T. Murphy and C.C. Steidel, Precision measures of the primordial abundance of deuterium, Astrophys. J. 781 (2014) 31 [arXiv:1308.3240] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  49. [49]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  50. [50]
    I. Gogoladze, N. Okada and Q. Shafi, Higgs boson mass bounds in a type-II seesaw model with triplet scalars, Phys. Rev. D 78 (2008) 085005 [arXiv:0802.3257] [INSPIRE].
  51. [51]
    B. He, N. Okada and Q. Shafi, 125 GeV Higgs, type-III seesaw and gauge-Higgs unification, Phys. Lett. B 716 (2012) 197 [arXiv:1205.4038] [INSPIRE].
  52. [52]
    J. Chakrabortty, M. Das and S. Mohanty, Constraints on TeV scale Majorana neutrino phenomenology from the vacuum stability of the Higgs, Mod. Phys. Lett. A 28 (2013) 1350032 [arXiv:1207.2027] [INSPIRE].
  53. [53]
    A. Kobakhidze and A. Spencer-Smith, Neutrino masses and Higgs vacuum stability, JHEP 08 (2013) 036 [arXiv:1305.7283] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    C. Bonilla, R.M. Fonseca and J.W.F. Valle, Vacuum stability with spontaneous violation of lepton number, Phys. Lett. B 756 (2016) 345 [arXiv:1506.04031] [INSPIRE].
  55. [55]
    J.N. Ng and A. de la Puente, Electroweak vacuum stability and the seesaw mechanism revisited, Eur. Phys. J. C 76 (2016) 122 [arXiv:1510.00742] [INSPIRE].
  56. [56]
    N. Haba, H. Ishida, N. Okada and Y. Yamaguchi, Vacuum stability and naturalness in type-II seesaw, Eur. Phys. J. C 76 (2016) 333 [arXiv:1601.05217] [INSPIRE].
  57. [57]
    I. Garg, S. Goswami, V.K. N. and N. Khan, Electroweak vacuum stability in presence of singlet scalar dark matter in TeV scale seesaw models, Phys. Rev. D 96 (2017) 055020 [arXiv:1706.08851] [INSPIRE].
  58. [58]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    T.P. Cheng, E. Eichten and L.-F. Li, Higgs phenomena in asymptotically free gauge theories, Phys. Rev. D 9 (1974) 2259 [INSPIRE].
  60. [60]
    D.J. Gross and F. Wilczek, Ultraviolet behavior of non-Abelian gauge theories, Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    H.D. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].
  62. [62]
    B. Grzadkowski and M. Lindner, Nonlinear evolution of Yukawa couplings, Phys. Lett. B 193 (1987) 71 [INSPIRE].
  63. [63]
    Yu. F. Pirogov and O.V. Zenin, Two loop renormalization group restrictions on the Standard Model and the fourth chiral family, Eur. Phys. J. C 10 (1999) 629 [hep-ph/9808396] [INSPIRE].
  64. [64]
    S. Antusch, J. Kersten, M. Lindner and M. Ratz, Neutrino mass matrix running for nondegenerate seesaw scales, Phys. Lett. B 538 (2002) 87 [hep-ph/0203233] [INSPIRE].
  65. [65]
    J.A. Casas, J.R. Espinosa, A. Ibarra and I. Navarro, General RG equations for physical neutrino parameters and their phenomenological implications, Nucl. Phys. B 573 (2000) 652 [hep-ph/9910420] [INSPIRE].
  66. [66]
    S. Antusch, J. Kersten, M. Lindner and M. Ratz, Running neutrino masses, mixings and CP phases: analytical results and phenomenological consequences, Nucl. Phys. B 674 (2003)401 [hep-ph/0305273] [INSPIRE].
  67. [67]
    J.A. Casas, J.R. Espinosa and M. Quirós, Improved Higgs mass stability bound in the Standard Model and implications for supersymmetry, Phys. Lett. B 342 (1995) 171 [hep-ph/9409458] [INSPIRE].
  68. [68]
    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].
  69. [69]
    M. Lindner, Implications of triviality for the Standard Model, Z. Phys. C 31 (1986) 295 [INSPIRE].
  70. [70]
    M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    N.K. Nielsen, On the gauge dependence of spontaneous symmetry breaking in gauge theories, Nucl. Phys. B 101 (1975) 173 [INSPIRE].
  72. [72]
    A.D. Plascencia and C. Tamarit, Convexity, gauge-dependence and tunneling rates, JHEP 10 (2016) 099 [arXiv:1510.07613] [INSPIRE].
  73. [73]
    H.H. Patel and M.J. Ramsey-Musolf, Baryon washout, electroweak phase transition and perturbation theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  74. [74]
    L. Di Luzio and L. Mihaila, On the gauge dependence of the Standard Model vacuum instability scale, JHEP 06 (2014) 079 [arXiv:1404.7450] [INSPIRE].CrossRefGoogle Scholar
  75. [75]
    Z. Lalak, M. Lewicki and P. Olszewski, Gauge fixing and renormalization scale independence of tunneling rate in Abelian Higgs model and in the Standard Model, Phys. Rev. D 94 (2016) 085028 [arXiv:1605.06713] [INSPIRE].
  76. [76]
    A. Andreassen, W. Frost and M.D. Schwartz, Scale invariant instantons and the complete lifetime of the Standard Model, Phys. Rev. D 97 (2018) 056006 [arXiv:1707.08124] [INSPIRE].
  77. [77]
    S. Chigusa, T. Moroi and Y. Shoji, State-of-the-art calculation of the decay rate of electroweak vacuum in the Standard Model, Phys. Rev. Lett. 119 (2017) 211801 [arXiv:1707.09301] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    ATLAS collaboration, Measurement of the top quark mass in the \( t\overline{t}\to lepton + jets \) channel from \( \sqrt{s}=8 \) TeV ATLAS data, ATLAS-CONF-2017-071, CERN, Geneva, Switzerland, (2017).
  79. [79]
    S. Menke, Measurements of the top quark mass using the CMS and ATLAS detectors at the LHC, in Moriond-Electroweak, (2018).Google Scholar
  80. [80]
    S. Bethke, G. Dissertori and G.P. Salam, World summary of α s (2015), EPJ Web Conf. 120 (2016) 07005 [INSPIRE].
  81. [81]
    F. Sannino, α s at LHC: challenging asymptotic freedom, in Proceedings, High-Precision α s Measurements from LHC to FCC-ee, Geneva, Switzerland, 2-13 October 2015, pg. 11 [arXiv:1511.09022] [INSPIRE].
  82. [82]
    D.F. Litim and F. Sannino, Asymptotic safety guaranteed, JHEP 12 (2014) 178 [arXiv:1406.2337] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    J.K. Esbensen, T.A. Ryttov and F. Sannino, Quantum critical behavior of semisimple gauge theories, Phys. Rev. D 93 (2016) 045009 [arXiv:1512.04402] [INSPIRE].
  84. [84]
    E. Mølgaard and F. Sannino, Asymptotically safe and free chiral theories with and without scalars, Phys. Rev. D 96 (2017) 056004 [arXiv:1610.03130] [INSPIRE].
  85. [85]
    G.M. Pelaggi, F. Sannino, A. Strumia and E. Vigiani, Naturalness of asymptotically safe Higgs, Front. Phys. 5 (2017) 49 [arXiv:1701.01453] [INSPIRE].CrossRefGoogle Scholar
  86. [86]
    S. Abel and F. Sannino, Radiative symmetry breaking from interacting UV fixed points, Phys. Rev. D 96 (2017) 056028 [arXiv:1704.00700] [INSPIRE].
  87. [87]
    A.D. Bond and D.F. Litim, More asymptotic safety guaranteed, Phys. Rev. D 97 (2018) 085008 [arXiv:1707.04217] [INSPIRE].
  88. [88]
    S. Abel and F. Sannino, Framework for an asymptotically safe Standard Model via dynamical breaking, Phys. Rev. D 96 (2017) 055021 [arXiv:1707.06638] [INSPIRE].
  89. [89]
    A.D. Bond and D.F. Litim, Asymptotic safety guaranteed in supersymmetry, Phys. Rev. Lett. 119 (2017) 211601 [arXiv:1709.06953] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  90. [90]
    A.D. Bond, D.F. Litim, G. Medina Vazquez and T. Steudtner, UV conformal window for asymptotic safety, Phys. Rev. D 97 (2018) 036019 [arXiv:1710.07615] [INSPIRE].
  91. [91]
    A.D. Bond and D.F. Litim, Theorems for asymptotic safety of gauge theories, Eur. Phys. J. C 77 (2017) 429 [Erratum ibid. C 77 (2017) 525] [arXiv:1608.00519] [INSPIRE].
  92. [92]
    A.D. Bond and D.F. Litim, Price of asymptotic safety, arXiv:1801.08527 [INSPIRE].
  93. [93]
    A.D. Bond, G. Hiller, K. Kowalska and D.F. Litim, Directions for model building from asymptotic safety, JHEP 08 (2017) 004 [arXiv:1702.01727] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  94. [94]
    A. Palanques-Mestre and P. Pascual, The 1/N F expansion of the γ and β-functions in QED, Commun. Math. Phys. 95 (1984) 277 [INSPIRE].
  95. [95]
    J.A. Gracey, The QCD β-function at O(1/N F), Phys. Lett. B 373 (1996) 178 [hep-ph/9602214] [INSPIRE].
  96. [96]
    B. Holdom, Large N flavor β-functions: a recap, Phys. Lett. B 694 (2011) 74 [arXiv:1006.2119] [INSPIRE].
  97. [97]
    V.V. Khoze and M. Spannowsky, Higgsploding universe, Phys. Rev. D 96 (2017) 075042 [arXiv:1707.01531] [INSPIRE].
  98. [98]
    O. Antipin, N.A. Dondi, F. Sannino, A.E. Thomsen and Z.-W. Wang, Gauge-Yukawa theories: β-functions at large N f , Phys. Rev. D 98 (2018) 016003 [arXiv:1803.09770] [INSPIRE].
  99. [99]
    R. Mann, J. Meffe, F. Sannino, T. Steele, Z.-W. Wang and C. Zhang, Asymptotically safe Standard Model via vectorlike fermions, Phys. Rev. Lett. 119 (2017) 261802 [arXiv:1707.02942] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    K. Kowalska and E.M. Sessolo, Gauge contribution to the 1/N F expansion of the Yukawa coupling β-function, JHEP 04 (2018) 027 [arXiv:1712.06859] [INSPIRE].
  101. [101]
    G.M. Pelaggi, A.D. Plascencia, A. Salvio, F. Sannino, J. Smirnov and A. Strumia, Asymptotically safe Standard Model extensions?, Phys. Rev. D 97 (2018) 095013 [arXiv:1708.00437] [INSPIRE].
  102. [102]
    G.F. Giudice, G. Isidori, A. Salvio and A. Strumia, Softened gravity and the extension of the Standard Model up to infinite energy, JHEP 02 (2015) 137 [arXiv:1412.2769] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    O. Antipin and F. Sannino, Conformal window 2.0: the large N f safe story, Phys. Rev. D 97 (2018) 116007 [arXiv:1709.02354] [INSPIRE].
  104. [104]
    L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Seyda Ipek
    • 1
  • Alexis D. Plascencia
    • 2
  • Jessica Turner
    • 3
    Email author
  1. 1.Department of Physics and AstronomyUniversity of California IrvineIrvineU.S.A.
  2. 2.Institute for Particle Physics Phenomenology, Department of PhysicsDurham UniversityDurhamU.K.
  3. 3.Theoretical Physics Department, Fermi National Accelerator LaboratoryBataviaU.S.A.

Personalised recommendations