Advertisement

Journal of High Energy Physics

, 2018:106 | Cite as

What do gravitons say about (unimodular) gravity?

  • Mario Herrero-ValeaEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We revisit the problem of constraining the weak field limit of the gravitational lagrangian from S-matrix properties. From unitarity and Lorentz invariance of the S-matrix of massless gravitons, we derive on-shell gauge invariance to consist on the transverse part of the linearised diffeomorphisms group. Moreover, by looking to the interaction between sources, we conclude that there exist only two possible lagrangians that lead to a welldefined covariant interaction, corresponding to the weak field limits of General Relativity and Unimodular Gravity. Additionally, this result confirms the equivalence of the S-matrix of both theories around flat space-time.

Keywords

Classical Theories of Gravity Gauge Symmetry Models of Quantum Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys. 61 (1989) 1 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J. Martin, Everything You Always Wanted To Know About The Cosmological Constant Problem (But Were Afraid To Ask), Comptes Rendus Physique 13 (2012) 566 [arXiv:1205.3365] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    A. Einstein, Do gravitational fields play an essential part in the structure of the elementary particles of matter? (in German), Sitzungsber. Preuss. Akad. Wiss. Berlin 1919 (1919) 349 [INSPIRE].
  4. [4]
    E. Álvarez, Can one tell Einstein’s unimodular theory from Einstein’s general relativity?, JHEP 03 (2005) 002 [hep-th/0501146] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  5. [5]
    W.G. Unruh, A Unimodular Theory of Canonical Quantum Gravity, Phys. Rev. D 40 (1989) 1048 [INSPIRE].
  6. [6]
    M. Henneaux and C. Teitelboim, The Cosmological Constant and General Covariance, Phys. Lett. B 222 (1989) 195 [INSPIRE].
  7. [7]
    M. Kreuzer, Gauge Theory of Volume Preserving Diffeomorphisms, Class. Quant. Grav. 7 (1990) 1303 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Y.J. Ng and H. van Dam, A Small but nonzero cosmological constant, Int. J. Mod. Phys. D 10 (2001) 49 [hep-th/9911102] [INSPIRE].
  9. [9]
    W. Buchmüller and N. Dragon, Einstein Gravity From Restricted Coordinate Invariance, Phys. Lett. B 207 (1988) 292 [INSPIRE].
  10. [10]
    S. Gielen, R. de León Ardón and R. Percacci, Gravity with more or less gauging, Class. Quant. Grav. 35 (2018) 195009 [arXiv:1805.11626] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    G.F.R. Ellis, H. van Elst, J. Murugan and J.-P. Uzan, On the Trace-Free Einstein Equations as a Viable Alternative to General Relativity, Class. Quant. Grav. 28 (2011) 225007 [arXiv:1008.1196] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    E. Álvarez and A.F. Faedo, Unimodular cosmology and the weight of energy, Phys. Rev. D 76 (2007) 064013 [hep-th/0702184] [INSPIRE].
  13. [13]
    K. Nozari and S. Shafizadeh, Cosmological inflation in a generalized unimodular gravity, Int. J. Mod. Phys. D 26 (2017) 1750107 [arXiv:1712.09522] [INSPIRE].
  14. [14]
    M. Shaposhnikov and D. Zenhausern, Scale invariance, unimodular gravity and dark energy, Phys. Lett. B 671 (2009) 187 [arXiv:0809.3395] [INSPIRE].
  15. [15]
    E. Álvarez, S. González-Martín, M. Herrero-Valea and C.P. Martín, Unimodular Gravity Redux, Phys. Rev. D 92 (2015) 061502 [arXiv:1505.00022] [INSPIRE].
  16. [16]
    E. Álvarez, S. González-Martın, M. Herrero-Valea and C.P. Martín, Quantum Corrections to Unimodular Gravity, JHEP 08 (2015) 078 [arXiv:1505.01995] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. Eichhorn, The Renormalization Group flow of unimodular f (R) gravity, JHEP 04 (2015) 096 [arXiv:1501.05848] [INSPIRE].
  18. [18]
    I.D. Saltas, UV structure of quantum unimodular gravity, Phys. Rev. D 90 (2014) 124052 [arXiv:1410.6163] [INSPIRE].
  19. [19]
    L. Smolin, The Quantization of unimodular gravity and the cosmological constant problems, Phys. Rev. D 80 (2009) 084003 [arXiv:0904.4841] [INSPIRE].
  20. [20]
    E. Álvarez, S. González-Martín and C.P. Martin, Unimodular Trees versus Einstein Trees, Eur. Phys. J. C 76 (2016) 554 [arXiv:1605.02667] [INSPIRE].
  21. [21]
    C.P. Martin, Unimodular Gravity and the lepton anomalous magnetic moment at one-loop, JCAP 07 (2017) 019 [arXiv:1704.01818] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  22. [22]
    S. González-Martín and C.P. Martin, Do the gravitational corrections to the β-functions of the quartic and Yukawa couplings have an intrinsic physical meaning?, Phys. Lett. B 773 (2017) 585 [arXiv:1707.06667] [INSPIRE].
  23. [23]
    R. de León Ardón, N. Ohta and R. Percacci, Path integral of unimodular gravity, Phys. Rev. D 97 (2018) 026007 [arXiv:1710.02457] [INSPIRE].
  24. [24]
    S. González-Martín and C.P. Martin, Unimodular Gravity and General Relativity UV divergent contributions to the scattering of massive scalar particles, JCAP 01 (2018) 028 [arXiv:1711.08009] [INSPIRE].
  25. [25]
    S. González-Martín and C.P. Martin, Scattering of fermions in the Yukawa theory coupled to Unimodular Gravity, Eur. Phys. J. C 78 (2018) 236 [arXiv:1802.03755] [INSPIRE].
  26. [26]
    R. Percacci, Unimodular quantum gravity and the cosmological constant, in proceedings of the Black Holes, Gravitational Waves and Spacetime Singularities, Rome, Italy, 9-12 May 2017, Found. Phys. 48 (2018) 1364 [arXiv:1712.09903] [INSPIRE].
  27. [27]
    R. Carballo-Rubio, Longitudinal diffeomorphisms obstruct the protection of vacuum energy, Phys. Rev. D 91 (2015) 124071 [arXiv:1502.05278] [INSPIRE].
  28. [28]
    E.D. Skvortsov and M.A. Vasiliev, Transverse Invariant Higher Spin Fields, Phys. Lett. B 664 (2008) 301 [hep-th/0701278] [INSPIRE].
  29. [29]
    A. Campoleoni and D. Francia, Maxwell-like Lagrangians for higher spins, JHEP 03 (2013) 168 [arXiv:1206.5877] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    C. Barceló, R. Carballo-Rubio and L.J. Garay, Unimodular gravity and general relativity from graviton self-interactions, Phys. Rev. D 89 (2014) 124019 [arXiv:1401.2941] [INSPIRE].
  31. [31]
    T. Padmanabhan, From gravitons to gravity: Myths and reality, Int. J. Mod. Phys. D 17 (2008) 367 [gr-qc/0409089] [INSPIRE].
  32. [32]
    S. Deser, Gravity from self-interaction redux, Gen. Rel. Grav. 42 (2010) 641 [arXiv:0910.2975] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    S. Deser, Selfinteraction and gauge invariance, Gen. Rel. Grav. 1 (1970) 9 [gr-qc/0411023] [INSPIRE].
  34. [34]
    S. Deser, Higher curvature gravities, unlike GR, cannot be bootstrapped from their (usual) linearizations, Gen. Rel. Grav. 49 (2017) 149 [arXiv:1705.08938] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    S. Weinberg, Photons and Gravitons in s Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev. 135 (1964) B1049 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    S. Weinberg, Photons and gravitons in perturbation theory: Derivation of Maxwell’s and Einstein’s equations, Phys. Rev. 138 (1965) B988 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  37. [37]
    T. Ortín, Higher order gravities and the Strong Equivalence Principle, JHEP 09 (2017) 152 [arXiv:1705.03495] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    J.J. van der Bij, H. van Dam and Y.J. Ng, The Exchange of Massless Spin Two Particles, Physica A 116 (1982) 307 [INSPIRE].
  39. [39]
    E. Álvarez, D. Blas, J. Garriga and E. Verdaguer, Transverse Fierz-Pauli symmetry, Nucl. Phys. B 756 (2006) 148 [hep-th/0606019] [INSPIRE].
  40. [40]
    E. Álvarez and M. Herrero-Valea, Unimodular gravity with external sources, JCAP 01 (2013) 014 [arXiv:1209.6223] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  41. [41]
    L.M. Butcher, M. Hobson and A. Lasenby, Bootstrapping gravity: A Consistent approach to energy-momentum self-coupling, Phys. Rev. D 80 (2009) 084014 [arXiv:0906.0926] [INSPIRE].
  42. [42]
    E. Álvarez, The Weight of matter, JCAP 07 (2012) 002 [arXiv:1204.6162] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute of Physics, Laboratory of Particle Physics and Cosmology, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations