Advertisement

Journal of High Energy Physics

, 2018:104 | Cite as

Charged scalars confronting neutrino mass and muon g − 2 anomaly

  • Nabarun Chakrabarty
  • Cheng-Wei ChiangEmail author
  • Takahiro Ohata
  • Koji Tsumura
Open Access
Regular Article - Theoretical Physics
  • 35 Downloads

Abstract

The present work introduces two possible extensions of the Standard Model Higgs sector. In the first case, the Zee-Babu type model for the generation of neutrino mass is augmented with a scalar triplet and additional singly charged scalar singlets. The second scenario, on the other hand, generalizes the Type-II seesaw model by replicating the number of the scalar triplets. A ℤ3 symmetry is imposed in case of both the scenarios, but, allowed to be violated by terms of mass dimension two and three for generating neutrino masses and mixings. We examine how the models so introduced can explain the experimental observation on the muon anomalous magnetic moment. We estimate the two-loop contribution to neutrino mass induced by the scalar triplet, in addition to what comes from the doubly charged singlet in the usual Zee-Babu framework, in the first model. On the other hand, the neutrino mass arises in the usual Type-II fashion in the second model. In addition, the role of the ℤ3 symmetry in suppressing lepton flavor violation is also elucidated.

Keywords

Beyond Standard Model Higgs Physics Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Muon g-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  2. [2]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421.Google Scholar
  3. [3]
    O. Sawada and A. Sugamoto, Workshop on the unified theories and the baryon number in the universe, Natl. Lab. High Energy Phys., Tsukuba, Japan (1979).Google Scholar
  4. [4]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  5. [5]
    S.L. Glashow, The future of elementary particle physics, NATO Sci. Ser. B 61 (1980) 687.Google Scholar
  6. [6]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Schechter and J.W.F. Valle, Neutrino masses in su(2) ⊗ u(1) theories, Phys. Rev. D 22 (1980) 2227.ADSGoogle Scholar
  8. [8]
    M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61.ADSCrossRefGoogle Scholar
  9. [9]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].Google Scholar
  11. [11]
    A. Zee, A theory of lepton number violation, neutrino majorana mass, and oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461].Google Scholar
  12. [12]
    K.S. Babu, Model ofcalculablemajorana neutrino masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Zee, Charged scalar field and quantum number violations, Phys. Lett. B 161 (1985) 141.ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A. Zee, Quantum numbers of Majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y. Farzan, S. Pascoli and M.A. Schmidt, Recipes and ingredients for neutrino mass at loop level, JHEP 03 (2013) 107 [arXiv:1208.2732] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P.W. Angel, N.L. Rodd and R.R. Volkas, Origin of neutrino masses at the LHC: ΔL = 2 effective operators and their ultraviolet completions, Phys. Rev. D 87 (2013) 073007 [arXiv:1212.6111] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S.S.C. Law and K.L. McDonald, The simplest models of radiative neutrino mass, Int. J. Mod. Phys. A 29 (2014) 1450064 [arXiv:1303.6384] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    Y. Cai e al., From the trees to the forest: a review of radiative neutrino mass models, Front. in Phys. 5 (2017) 63 [arXiv:1706.08524] [INSPIRE].
  19. [19]
    H. Sugiyama, Radiative neutrino mass models, in the proceedings of the 2nd Toyama International Workshop on Higgs as a Probe of New Physics (HPNP2015), Febraury 11–15, Toyama, Japan (2015), arXiv:1505.01738 [INSPIRE].
  20. [20]
    O. Antipin, P. Čuljak, K. Kumerički and I. Picek, Extended Higgs sectors in radiative neutrino models, Phys. Lett. B 768 (2017) 330.ADSCrossRefGoogle Scholar
  21. [21]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an so(10) model, Nucl. Phys. B 181 (1981) 287.ADSCrossRefGoogle Scholar
  22. [22]
    R. N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165.ADSGoogle Scholar
  23. [23]
    T. Fukuyama, H. Sugiyama and K. Tsumura, Constraints from muon g − 2 and LFV processes in the Higgs Triplet Model, JHEP 03 (2010) 044 [arXiv:0909.4943] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    D. Schmidt, T. Schwetz and H. Zhang, Status of the Zee-Babu model for neutrino mass and possible tests at a like-sign linear collider, Nucl. Phys. B 885 (2014) 524 [arXiv:1402.2251] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    J. Herrero-Garcia, M. Nebot, N. Rius and A. Santamaria, The Zee-Babu model revisited in the light of new data, Nucl. Phys. B 885 (2014) 542 [arXiv:1402.4491] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    W. Chao, J.-H. Zhang and Y. Zhang, Vacuum stability and Higgs diphoton decay rate in the Zee-Babu model, JHEP 06 (2013) 039 [arXiv:1212.6272] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Ohlsson, T. Schwetz, and H. Zhang, Non-standard neutrino interactions in the Zee-Babu model, Phys. Lett. B 681 (2009) 269.ADSCrossRefGoogle Scholar
  29. [29]
    S. Baek, P. Ko, H. Okada and E. Senaha, Can Zee-Babu model implemented with scalar dark matter explain both Fermi/LAT 130 GeV γ-ray excess and neutrino physics ?, JHEP 09 (2014) 153 [arXiv:1209.1685] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S.-Y. Guo, Z.-L. Han, B. Li, Y. Liao and X.-D. Ma, Interpreting the \( {R}_{K^{\left(*\right)}} \) anomaly in the colored Zee-Babu model, Nucl. Phys. B 928 (2018) 435 [arXiv:1707.00522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    T. Nomura and H. Okada, An extended colored Zee-Babu model, Phys. Rev. D 94 (2016) 075021 [arXiv:1607.04952] [INSPIRE].ADSGoogle Scholar
  32. [32]
    H. Okada, T. Toma and K. Yagyu, Inert extension of the Zee-Babu model, Phys. Rev. D 90 (2014) 095005 [arXiv:1408.0961] [INSPIRE].ADSGoogle Scholar
  33. [33]
    T. Nomura and H. Okada, Zee-Babu type model with \( U{(1)}_{L_{\mu }-{L}_{\tau }} \) gauge symmetry, Phys. Rev. D 97 (2018) 095023 [arXiv:1803.04795] [INSPIRE].ADSGoogle Scholar
  34. [34]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001.Google Scholar
  35. [35]
    P.S. Bhupal Dev, D.K. Ghosh, N. Okada and I. Saha, 125 GeV Higgs boson and the type-II seesaw model, JHEP 03 (2013) 150 [Erratum ibid. 1305 (2013) 049] [arXiv:1301.3453] [INSPIRE].
  36. [36]
    M. Aoki, S. Kanemura and K. Yagyu, Testing the Higgs triplet model with the mass difference at the LHC, Phys. Rev. D 85 (2012) 055007 [arXiv:1110.4625] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S.R. Moore, K. Whisnant and B.L. Young, Second-order corrections to the muon anomalous magnetic moment in alternative electroweak models, Phys. Rev. D 31 (1985) 105.ADSGoogle Scholar
  38. [38]
    M. Lindner, M. Platscher and F.S. Queiroz, A call for new physics: the muon anomalous magnetic moment and lepton flavor violation, Phys. Rept. 731 (2018) 1 [arXiv:1610.06587] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    L. Calibbi and G. Signorelli, Charged lepton flavour violation: an experimental and theoretical introduction, Riv. Nuovo Cim. 41 (2018) 1 [arXiv:1709.00294] [INSPIRE].Google Scholar
  40. [40]
    MEG collaboration, A.M. Baldini et al., Search for the lepton flavour violating decay μ +e + γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
  41. [41]
    BaBar collaboration, B. Aubert et al., Searches for Lepton flavor violation in the decays τ ±e ± γ and τ ±μ ± γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].
  42. [42]
    SINDRUM collaboration, U. Bellgardt et al., Search for the decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [INSPIRE].
  43. [43]
    HFLAV collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
  44. [44]
    T. Blank and W. Hollik, Precision observables in SU(2) × U(1) models with an additional Higgs triplet, Nucl. Phys. B 514 (1998) 113 [hep-ph/9703392] [INSPIRE].
  45. [45]
    CMS Collaboration, A search for doubly-charged Higgs boson production in three and four lepton final states at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-036 (2017).
  46. [46]
    K.L. McDonald and B.H.J. McKellar, Evaluating the two loop diagram responsible for neutrino mass in Babus model, hep-ph/0309270 [INSPIRE].
  47. [47]
    ACME collaboration, V. Andreev et al., Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].
  48. [48]
    Muon (g-2) collaboration, G.W. Bennett et al., An improved limit on the muon electric dipole moment, Phys. Rev. D 80 (2009) 052008 [arXiv:0811.1207] [INSPIRE].
  49. [49]
    Particle Data Group collaboration, M. Tanabashi et al., Review of particle physics, Phys. Rev. 98 (2018) 030001.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Physics DivisionNational Center for Theoretical SciencesHsinchuR.O.C.
  2. 2.Department of PhysicsNational Taiwan UniversityTaipeiR.O.C.
  3. 3.Institute of PhysicsAcademia SinicaTaipeiR.O.C.
  4. 4.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations