# Charged scalars confronting neutrino mass and muon *g* − 2 anomaly

- 73 Downloads

## Abstract

The present work introduces two possible extensions of the Standard Model Higgs sector. In the first case, the Zee-Babu type model for the generation of neutrino mass is augmented with a scalar triplet and additional singly charged scalar singlets. The second scenario, on the other hand, generalizes the Type-II seesaw model by replicating the number of the scalar triplets. A ℤ_{3} symmetry is imposed in case of both the scenarios, but, allowed to be violated by terms of mass dimension two and three for generating neutrino masses and mixings. We examine how the models so introduced can explain the experimental observation on the muon anomalous magnetic moment. We estimate the two-loop contribution to neutrino mass induced by the scalar triplet, in addition to what comes from the doubly charged singlet in the usual Zee-Babu framework, in the first model. On the other hand, the neutrino mass arises in the usual Type-II fashion in the second model. In addition, the role of the ℤ_{3} symmetry in suppressing lepton flavor violation is also elucidated.

## Keywords

Beyond Standard Model Higgs Physics Neutrino Physics## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]Muon g-2 collaboration, G.W. Bennett et al.,
*Final report of the muon E821 anomalous magnetic moment measurement at BNL*,*Phys. Rev.***D 73**(2006) 072003 [hep-ex/0602035] [INSPIRE]. - [2]P. Minkowski,
*μ*→*eγ at a rate of one out of*10^{9}*muon decays?*,*Phys. Lett.***B 67**(1977) 421.Google Scholar - [3]O. Sawada and A. Sugamoto,
*Workshop on the unified theories and the baryon number in the universe*, Natl. Lab. High Energy Phys., Tsukuba, Japan (1979).Google Scholar - [4]M. Gell-Mann, P. Ramond and R. Slansky,
*Complex spinors and unified theories*,*Conf. Proc.***C 790927**(1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar - [5]S.L. Glashow,
*The future of elementary particle physics*,*NATO Sci. Ser. B***61**(1980) 687.Google Scholar - [6]R.N. Mohapatra and G. Senjanović,
*Neutrino mass and spontaneous parity nonconservation*,*Phys. Rev. Lett.***44**(1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar - [7]J. Schechter and J.W.F. Valle,
*Neutrino masses in su*(2) ⊗*u*(1)*theories*,*Phys. Rev.***D 22**(1980) 2227.ADSGoogle Scholar - [8]M. Magg and C. Wetterich,
*Neutrino mass problem and gauge hierarchy*,*Phys. Lett.***B 94**(1980) 61.ADSCrossRefGoogle Scholar - [9]G. Lazarides, Q. Shafi and C. Wetterich,
*Proton lifetime and fermion masses in an*SO(10)*model*,*Nucl. Phys.***B 181**(1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar - [10]R. Foot, H. Lew, X.G. He and G.C. Joshi,
*Seesaw neutrino masses induced by a triplet of leptons*,*Z. Phys.***C 44**(1989) 441 [INSPIRE].Google Scholar - [11]A. Zee,
*A theory of lepton number violation, neutrino majorana mass, and oscillation*,*Phys. Lett.***B 93**(1980) 389 [*Erratum ibid.***B 95**(1980) 461].Google Scholar - [12]K.S. Babu,
*Model of*‘*calculable*’*majorana neutrino masses*,*Phys. Lett.***B 203**(1988) 132 [INSPIRE].ADSCrossRefGoogle Scholar - [13]A. Zee,
*Charged scalar field and quantum number violations*,*Phys. Lett.***B 161**(1985) 141.ADSMathSciNetCrossRefGoogle Scholar - [14]A. Zee,
*Quantum numbers of Majorana neutrino masses*,*Nucl. Phys.***B 264**(1986) 99 [INSPIRE].ADSCrossRefGoogle Scholar - [15]Y. Farzan, S. Pascoli and M.A. Schmidt,
*Recipes and ingredients for neutrino mass at loop level*,*JHEP***03**(2013) 107 [arXiv:1208.2732] [INSPIRE].ADSCrossRefGoogle Scholar - [16]P.W. Angel, N.L. Rodd and R.R. Volkas,
*Origin of neutrino masses at the LHC:*Δ*L*= 2*effective operators and their ultraviolet completions*,*Phys. Rev.***D 87**(2013) 073007 [arXiv:1212.6111] [INSPIRE].ADSGoogle Scholar - [17]S.S.C. Law and K.L. McDonald,
*The simplest models of radiative neutrino mass*,*Int. J. Mod. Phys.***A 29**(2014) 1450064 [arXiv:1303.6384] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [18]Y. Cai e al.,
*From the trees to the forest: a review of radiative neutrino mass models*,*Front. in Phys.***5**(2017) 63 [arXiv:1706.08524] [INSPIRE]. - [19]H. Sugiyama,
*Radiative neutrino mass models*, in the proceedings of the 2^{nd}*Toyama International Workshop on Higgs as a Probe of New Physics (HPNP2015)*, Febraury 11–15, Toyama, Japan (2015), arXiv:1505.01738 [INSPIRE]. - [20]O. Antipin, P. Čuljak, K. Kumerički and I. Picek,
*Extended Higgs sectors in radiative neutrino models*,*Phys. Lett.***B 768**(2017) 330.ADSCrossRefGoogle Scholar - [21]G. Lazarides, Q. Shafi and C. Wetterich,
*Proton lifetime and fermion masses in an so*(10)*model*,*Nucl. Phys.***B 181**(1981) 287.ADSCrossRefGoogle Scholar - [22]R. N. Mohapatra and G. Senjanović,
*Neutrino masses and mixings in gauge models with spontaneous parity violation*,*Phys. Rev.***D 23**(1981) 165.ADSGoogle Scholar - [23]T. Fukuyama, H. Sugiyama and K. Tsumura,
*Constraints from muon g*− 2*and LFV processes in the Higgs Triplet Model*,*JHEP***03**(2010) 044 [arXiv:0909.4943] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [24]D. Schmidt, T. Schwetz and H. Zhang,
*Status of the Zee-Babu model for neutrino mass and possible tests at a like-sign linear collider*,*Nucl. Phys.***B 885**(2014) 524 [arXiv:1402.2251] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [25]J. Herrero-Garcia, M. Nebot, N. Rius and A. Santamaria,
*The Zee-Babu model revisited in the light of new data*,*Nucl. Phys.***B 885**(2014) 542 [arXiv:1402.4491] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [26]S. Weinberg,
*Baryon and lepton nonconserving processes*,*Phys. Rev. Lett.***43**(1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar - [27]W. Chao, J.-H. Zhang and Y. Zhang,
*Vacuum stability and Higgs diphoton decay rate in the Zee-Babu model*,*JHEP***06**(2013) 039 [arXiv:1212.6272] [INSPIRE].ADSCrossRefGoogle Scholar - [28]T. Ohlsson, T. Schwetz, and H. Zhang,
*Non-standard neutrino interactions in the Zee-Babu model*,*Phys. Lett.***B 681**(2009) 269.ADSCrossRefGoogle Scholar - [29]S. Baek, P. Ko, H. Okada and E. Senaha,
*Can Zee-Babu model implemented with scalar dark matter explain both Fermi/LAT*130*GeV γ-ray excess and neutrino physics ?*,*JHEP***09**(2014) 153 [arXiv:1209.1685] [INSPIRE].ADSCrossRefGoogle Scholar - [30]S.-Y. Guo, Z.-L. Han, B. Li, Y. Liao and X.-D. Ma,
*Interpreting the*\( {R}_{K^{\left(*\right)}} \)*anomaly in the colored Zee-Babu model*,*Nucl. Phys.***B 928**(2018) 435 [arXiv:1707.00522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [31]T. Nomura and H. Okada,
*An extended colored Zee-Babu model*,*Phys. Rev.***D 94**(2016) 075021 [arXiv:1607.04952] [INSPIRE].ADSGoogle Scholar - [32]H. Okada, T. Toma and K. Yagyu,
*Inert extension of the Zee-Babu model*,*Phys. Rev.***D 90**(2014) 095005 [arXiv:1408.0961] [INSPIRE].ADSGoogle Scholar - [33]T. Nomura and H. Okada,
*Zee-Babu type model with*\( U{(1)}_{L_{\mu }-{L}_{\tau }} \)*gauge symmetry*,*Phys. Rev.***D 97**(2018) 095023 [arXiv:1803.04795] [INSPIRE].ADSGoogle Scholar - [34]Particle Data Group collaboration, C. Patrignani et al.,
*Review of particle physics*,*Chin. Phys.***C 40**(2016) 100001.Google Scholar - [35]P.S. Bhupal Dev, D.K. Ghosh, N. Okada and I. Saha, 125
*GeV Higgs boson and the type-II seesaw model*,*JHEP***03**(2013) 150 [*Erratum ibid.***1305**(2013) 049] [arXiv:1301.3453] [INSPIRE]. - [36]M. Aoki, S. Kanemura and K. Yagyu,
*Testing the Higgs triplet model with the mass difference at the LHC*,*Phys. Rev.***D 85**(2012) 055007 [arXiv:1110.4625] [INSPIRE].ADSGoogle Scholar - [37]S.R. Moore, K. Whisnant and B.L. Young,
*Second-order corrections to the muon anomalous magnetic moment in alternative electroweak models*,*Phys. Rev.***D 31**(1985) 105.ADSGoogle Scholar - [38]M. Lindner, M. Platscher and F.S. Queiroz,
*A call for new physics: the muon anomalous magnetic moment and lepton flavor violation*,*Phys. Rept.***731**(2018) 1 [arXiv:1610.06587] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [39]L. Calibbi and G. Signorelli,
*Charged lepton flavour violation: an experimental and theoretical introduction*,*Riv. Nuovo Cim.***41**(2018) 1 [arXiv:1709.00294] [INSPIRE].Google Scholar - [40]MEG collaboration, A.M. Baldini et al.,
*Search for the lepton flavour violating decay μ*^{+}→*e*^{+}*γ with the full dataset of the MEG experiment*,*Eur. Phys. J.***C 76**(2016) 434 [arXiv:1605.05081] [INSPIRE]. - [41]BaBar collaboration, B. Aubert et al.,
*Searches for Lepton flavor violation in the decays τ*^{±}→*e*^{±}*γ and τ*^{±}→*μ*^{±}*γ*,*Phys. Rev. Lett.***104**(2010) 021802 [arXiv:0908.2381] [INSPIRE]. - [42]SINDRUM collaboration, U. Bellgardt et al.,
*Search for the decay μ*^{+}→*e*^{+}*e*^{+}*e*^{−},*Nucl. Phys.***B 299**(1988) 1 [INSPIRE]. - [43]HFLAV collaboration, Y. Amhis et al.,
*Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2016*,*Eur. Phys. J.***C 77**(2017) 895 [arXiv:1612.07233] [INSPIRE]. - [44]T. Blank and W. Hollik,
*Precision observables in*SU(2) × U(1)*models with an additional Higgs triplet*,*Nucl. Phys.***B 514**(1998) 113 [hep-ph/9703392] [INSPIRE]. - [45]CMS Collaboration,
*A search for doubly-charged Higgs boson production in three and four lepton final states at*\( \sqrt{s}=13 \)*TeV*, CMS-PAS-HIG-16-036 (2017). - [46]K.L. McDonald and B.H.J. McKellar,
*Evaluating the two loop diagram responsible for neutrino mass in Babu*’*s model*, hep-ph/0309270 [INSPIRE]. - [47]ACME collaboration, V. Andreev et al.,
*Improved limit on the electric dipole moment of the electron*,*Nature***562**(2018) 355 [INSPIRE]. - [48]Muon (g-2) collaboration, G.W. Bennett et al.,
*An improved limit on the muon electric dipole moment*,*Phys. Rev.***D 80**(2009) 052008 [arXiv:0811.1207] [INSPIRE]. - [49]Particle Data Group collaboration, M. Tanabashi et al.,
*Review of particle physics*,*Phys. Rev.***98**(2018) 030001.Google Scholar