Advertisement

Journal of High Energy Physics

, 2018:103 | Cite as

Pati-Salam explanations of the B-meson anomalies

  • Julian HeeckEmail author
  • Daniele Teresi
Open Access
Regular Article - Theoretical Physics

Abstract

We provide a combined explanation of the increasingly tantalizing B-meson anomalies, both in \( {R}_{K^{\left(\ast \right)}} \) and \( {R}_{D^{\left(\ast \right)}} \), in the Pati-Salam model with minimal matter content. This well-known model, based on the gauge group SU(4)LC × SU(2)L × SU(2)R, naturally contains a variety of scalar leptoquarks with related and restricted couplings. In particular we show that the seesaw-motivated scalar leptoquark within the representation (\( \overline{\mathbf{10}} \),3,1) and its right-handed parity partner (\( \overline{\mathbf{10}} \),1,3) can solve both anomalies while making testable predictions for related observables such as BKνν and BKμτ. The solution of the \( {R}_{K^{\left(\ast \right)}} \) anomaly alone can be related to a type-II seesaw neutrino mass structure. Explaining also \( {R}_{D^{\left(\ast \right)}} \) requires the existence of a light right-handed neutrino, which constrains the UV structure of the model.

Keywords

Beyond Standard Model Gauge Symmetry Heavy Quark Physics Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    BaBar collaboration, J.P. Lees et al., Evidence for an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
  2. [2]
    BaBar collaboration, J.P. Lees et al., Measurement of an Excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
  3. [3]
    Belle collaboration, M. Huschle et al., Measurement of the branching ratio of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( \overline{B}\to {D}^{\left(\ast \right)}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
  4. [4]
    Belle collaboration, Y. Sato et al., Measurement of the branching ratio of \( {\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( {\overline{B}}^0\to {D}^{\ast +}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with a semileptonic tagging method, Phys. Rev. D 94 (2016) 072007 [arXiv:1607.07923] [INSPIRE].
  5. [5]
    Belle collaboration, S. Hirose et al., Measurement of the τ lepton polarization and R(D *) in the decay \( \overline{B}\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \), Phys. Rev. Lett. 118 (2017) 211801 [arXiv:1612.00529] [INSPIRE].
  6. [6]
    LHCb collaboration, Measurement of the ratio of branching fractions \( \mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [Erratum ibid. 115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].
  7. [7]
    LHCb collaboration, Measurement of the ratio of the B 0D *− τ + ν τ and B 0D *− μ + ν μ branching fractions using three-prong τ-lepton decays, Phys. Rev. Lett. 120 (2018) 171802 [arXiv:1708.08856] [INSPIRE].
  8. [8]
    LHCb collaboration, Test of Lepton Flavor Universality by the measurement of the B 0D *− τ + ν τ branching fraction using three-prong τ decays, Phys. Rev. D 97 (2018) 072013 [arXiv:1711.02505] [INSPIRE].
  9. [9]
    HFLAV collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
  10. [10]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  11. [11]
    LHCb collaboration, Test of lepton universality with B 0K *0 + decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  12. [12]
    LHCb collaboration, Angular analysis of the B 0K *0 μ + μ decay using 3 fb −1 of integrated luminosity, JHEP 02 (2016) 104 [arXiv:1512.04442] [INSPIRE].
  13. [13]
    LHCb collaboration, Measurement of Form-Factor-Independent Observables in the Decay B 0K *0 μ + μ , Phys. Rev. Lett. 111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].
  14. [14]
    B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, Patterns of New Physics in bsℓ + transitions in the light of recent data, JHEP 01 (2018) 093 [arXiv:1704.05340] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    W. Altmannshofer, P. Stangl and D.M. Straub, Interpreting Hints for Lepton Flavor Universality Violation, Phys. Rev. D 96 (2017) 055008 [arXiv:1704.05435] [INSPIRE].ADSGoogle Scholar
  16. [16]
    L.-S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X.-L. Ren and R.-X. Shi, Towards the discovery of new physics with lepton-universality ratios of bsℓℓ decays, Phys. Rev. D 96 (2017) 093006 [arXiv:1704.05446] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Ciuchini et al., On Flavourful Easter eggs for New Physics hunger and Lepton Flavour Universality violation, Eur. Phys. J. C 77 (2017) 688 [arXiv:1704.05447] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    G. D’Amico et al., Flavour anomalies after the \( {R}_{K^{*}} \) measurement, JHEP 09 (2017) 010 [arXiv:1704.05438] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    G. Hiller and I. Nisandzic, R K and \( {R}_{K^{*}} \) beyond the standard model, Phys. Rev. D 96 (2017) 035003 [arXiv:1704.05444] [INSPIRE].ADSGoogle Scholar
  20. [20]
    L. Di Luzio and M. Nardecchia, What is the scale of new physics behind the B-flavour anomalies?, Eur. Phys. J. C 77 (2017) 536 [arXiv:1706.01868] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184 [arXiv:1505.05164] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, B-physics anomalies: a guide to combined explanations, JHEP 11 (2017) 044 [arXiv:1706.07808] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Crivellin, D. Müller and T. Ota, Simultaneous explanation of R(D (*)) and b + μ : the last scalar leptoquarks standing, JHEP 09 (2017) 040 [arXiv:1703.09226] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. Bečirević, S. Fajfer, N. Košnik and O. Sumensari, Leptoquark model to explain the B-physics anomalies, R K and R D, Phys. Rev. D 94 (2016) 115021 [arXiv:1608.08501] [INSPIRE].ADSGoogle Scholar
  25. [25]
    P. Asadi, M.R. Buckley and D. Shih, Its all right(-handed neutrinos): a new Wmodel for the \( {R}_{D^{\left(\ast \right)}} \) anomaly, JHEP 09 (2018) 010 [arXiv:1804.04135] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Greljo, D.J. Robinson, B. Shakya and J. Zupan, R(D (*)) from Wand right-handed neutrinos, JHEP 09 (2018) 169 [arXiv:1804.04642] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    D.J. Robinson, B. Shakya and J. Zupan, Right-handed Neutrinos and R(D (*)), arXiv:1807.04753 [INSPIRE].
  28. [28]
    A. Azatov, D. Barducci, D. Ghosh, D. Marzocca and L. Ubaldi, Combined explanations of B-physics anomalies: the sterile neutrino solution, JHEP 10 (2018) 092 [arXiv:1807.10745] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Bečirević, I. Doršner, S. Fajfer, N. Košnik, D.A. Faroughy and O. Sumensari, Scalar leptoquarks from grand unified theories to accommodate the B-physics anomalies, Phys. Rev. D 98 (2018) 055003 [arXiv:1806.05689] [INSPIRE].ADSGoogle Scholar
  30. [30]
    T. Faber, M. Hudec, M. Malinský, P. Meinzinger, W. Porod and F. Staub, A unified leptoquark model confronted with lepton non-universality in B-meson decays, Phys. Lett. B 787 (2018) 159 [arXiv:1808.05511] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    N. Assad, B. Fornal and B. Grinstein, Baryon Number and Lepton Universality Violation in Leptoquark and Diquark Models, Phys. Lett. B 777 (2018) 324 [arXiv:1708.06350] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G. Valencia and S. Willenbrock, Quark-lepton unification and rare meson decays, Phys. Rev. D 50 (1994) 6843 [hep-ph/9409201] [INSPIRE].
  33. [33]
    A.D. Smirnov, Mass limits for scalar and gauge leptoquarks from K L0 → e ± μ , B 0e ± τ decays, Mod. Phys. Lett. A 22 (2007) 2353 [arXiv:0705.0308] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A.V. Kuznetsov, N.V. Mikheev and A.V. Serghienko, The third type of fermion mixing in the lepton and quark interactions with leptoquarks, Int. J. Mod. Phys. A 27 (2012) 1250062 [arXiv:1203.0196] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    A.D. Smirnov, Vector leptoquark mass limits and branching ratios of K L0 , B 0 , B s → l i+ l j decays with account of fermion mixing in leptoquark currents, Mod. Phys. Lett. A 33 (2018) 1850019 [arXiv:1801.02895] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    L. Calibbi, A. Crivellin and T. Li, Model of vector leptoquarks in view of the B-physics anomalies, Phys. Rev. D 98 (2018) 115002 [arXiv:1709.00692] [INSPIRE].Google Scholar
  37. [37]
    L. Di Luzio, A. Greljo and M. Nardecchia, Gauge leptoquark as the origin of B-physics anomalies, Phys. Rev. D 96 (2017) 115011 [arXiv:1708.08450] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Blanke and A. Crivellin, B Meson Anomalies in a Pati-Salam Model within the Randall-Sundrum Background, Phys. Rev. Lett. 121 (2018) 011801 [arXiv:1801.07256] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Bordone, C. Cornella, J. Fuentes-Martin and G. Isidori, A three-site gauge model for flavor hierarchies and flavor anomalies, Phys. Lett. B 779 (2018) 317 [arXiv:1712.01368] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Barbieri and A. Tesi, B-decay anomalies in Pati-Salam SU(4), Eur. Phys. J. C 78 (2018) 193 [arXiv:1712.06844] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  42. [42]
    J.C. Pati, A. Salam and U. Sarkar, ΔB = −ΔL, neutrone π + , e K + , μ π + and μ K + DECAY modes in SU(2)L × SU(2)R × SU(4)C or SO(10), Phys. Lett. 133B (1983) 330 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R.R. Volkas, Prospects for mass unification at low-energy scales, Phys. Rev. D 53 (1996) 2681 [hep-ph/9507215] [INSPIRE].
  44. [44]
    A. Maiezza, M. Nemevšek, F. Nesti and G. Senjanović, Left-Right Symmetry at LHC, Phys. Rev. D 82 (2010) 055022 [arXiv:1005.5160] [INSPIRE].ADSGoogle Scholar
  45. [45]
    G. Senjanović and V. Tello, Right Handed Quark Mixing in Left-Right Symmetric Theory, Phys. Rev. Lett. 114 (2015) 071801 [arXiv:1408.3835] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Magg and C. Wetterich, Neutrino Mass Problem and Gauge Hierarchy, Phys. Lett. 94B (1980) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  48. [48]
    T.P. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  49. [49]
    Particle Data Group collaboration, M. Tanabashi et al., Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  50. [50]
    R.N. Mohapatra and R.E. Marshak, Local BL Symmetry of Electroweak Interactions, Majorana Neutrinos and Neutron Oscillations, Phys. Rev. Lett. 44 (1980) 1316 [Erratum ibid. 44 (1980) 1643] [INSPIRE].
  51. [51]
    W. Buchmüller, R. Ruckl and D. Wyler, Leptoquarks in lepton-quark collisions, Phys. Lett. B 191 (1987) 442 [Erratum ibid. B 448 (1999) 320] [INSPIRE].
  52. [52]
    I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1 [arXiv:1603.04993] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    I. Doršner, S. Fajfer, D.A. Faroughy and N. Košnik, The role of the S 3 GUT leptoquark in flavor universality and collider searches, arXiv:1706.07779 [INSPIRE].
  54. [54]
    D. Marzocca, Addressing the B-physics anomalies in a fundamental Composite Higgs Model, JHEP 07 (2018) 121 [arXiv:1803.10972] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the \( {R}_{D^{\left(\ast \right)}} \) , R K and (g − 2)g Anomalies, Phys. Rev. Lett. 116 (2016) 141802 [arXiv:1511.01900] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    D. Bečirević, N. Košnik, O. Sumensari and R. Zukanovich Funchal, Palatable Leptoquark Scenarios for Lepton Flavor Violation in Exclusive bsℓ 1 2 modes, JHEP 11 (2016) 035 [arXiv:1608.07583] [INSPIRE].Google Scholar
  57. [57]
    Y. Cai, J. Gargalionis, M.A. Schmidt and R.R. Volkas, Reconsidering the One Leptoquark solution: flavor anomalies and neutrino mass, JHEP 10 (2017) 047 [arXiv:1704.05849] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Freytsis, Z. Ligeti and J.T. Ruderman, Flavor models for \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 92 (2015) 054018 [arXiv:1506.08896] [INSPIRE].ADSGoogle Scholar
  59. [59]
    U. Aydemir, D. Minic, C. Sun and T. Takeuchi, B-decay anomalies and scalar leptoquarks in unified Pati-Salam models from noncommutative geometry, JHEP 09 (2018) 117 [arXiv:1804.05844] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    J.F. Nieves, Baryon and Lepton Number Nonconserving Processes and Intermediate Mass Scales, Nucl. Phys. B 189 (1981) 182 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    T. Hambye and J. Heeck, Proton decay into charged leptons, Phys. Rev. Lett. 120 (2018) 171801 [arXiv:1712.04871] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J.C. Pati, Nucleon Decays Into Lepton + Lepton + Anti-lepton + Mesons Within SU(4) of Color, Phys. Rev. D 29 (1984) 1549 [INSPIRE].ADSGoogle Scholar
  63. [63]
    P.J. O’Donnell and U. Sarkar, Three lepton decay mode of the proton, Phys. Lett. B 316 (1993) 121 [hep-ph/9307254] [INSPIRE].
  64. [64]
    E.K. Akhmedov and M. Frigerio, Duality in Left-Right Symmetric Seesaw Mechanism, Phys. Rev. Lett. 96 (2006) 061802 [hep-ph/0509299] [INSPIRE].
  65. [65]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    SINDRUM II collaboration, W.H. Bertl et al., A Search for muon to electron conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337 [INSPIRE].
  67. [67]
    T. Araki, J. Heeck and J. Kubo, Vanishing Minors in the Neutrino Mass Matrix from Abelian Gauge Symmetries, JHEP 07 (2012) 083 [arXiv:1203.4951] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    Mu2e collaboration, L. Bartoszek et al., Mu2e Technical Design Report, arXiv:1501.05241 [INSPIRE].
  69. [69]
    COMET collaboration, B.E. Krikler, An Overview of the COMET Experiment and its Recent Progress, in Proceedings, 17th International Workshop on Neutrino Factories and Future Neutrino Facilities (NuFact15): Rio de Janeiro, Brazil, August 10-15, 2015, 2015, arXiv:1512.08564 [INSPIRE].
  70. [70]
    A. Blondel et al., Research Proposal for an Experiment to Search for the Decay μeee, arXiv:1301.6113 [INSPIRE].
  71. [71]
    MEG II collaboration, A.M. Baldini et al., The design of the MEG II experiment, Eur. Phys. J. C 78 (2018) 380 [arXiv:1801.04688] [INSPIRE].
  72. [72]
    S. Cunliffe, Lepton non-universality and lepton flavour violation at Belle II, talk at 6th Workshop on Rare Semileptonic B Decays, Munich Germany (2018).Google Scholar
  73. [73]
    Belle II collaboration, E. Kou et al., The Belle II Physics Book, arXiv:1808.10567 [INSPIRE].
  74. [74]
    ATLAS collaboration, Search for High-Mass Resonances Decaying to τν in pp Collisions at \( \sqrt{s}=13 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 120 (2018) 161802 [arXiv:1801.06992] [INSPIRE].
  75. [75]
    CMS collaboration, Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 97 (2018) 092005 [arXiv:1712.02345] [INSPIRE].
  76. [76]
    CMS collaboration, Search for leptoquarks coupling to third generation quarks, CMS-PAS-B2G-16-027 (2017).
  77. [77]
    M. Drewes et al., A White Paper on keV Sterile Neutrino Dark Matter, JCAP 01 (2017) 025 [arXiv:1602.04816] [INSPIRE].Google Scholar
  78. [78]
    A. Greljo and B.A. Stefanek, Third family quark-lepton unification at the TeV scale, Phys. Lett. B 782 (2018) 131 [arXiv:1802.04274] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].
  80. [80]
    S. Davidson, D.C. Bailey and B.A. Campbell, Model independent constraints on leptoquarks from rare processes, Z. Phys. C 61 (1994) 613 [hep-ph/9309310] [INSPIRE].
  81. [81]
    V. Cirigliano and I. Rosell, Two-loop effective theory analysis of \( \pi (K)\to e{\overline{\nu}}_e\left[\gamma \right] \) branching ratios, Phys. Rev. Lett. 99 (2007) 231801 [arXiv:0707.3439] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    J. Brod, M. Gorbahn and E. Stamou, Two-Loop Electroweak Corrections for the \( K\to \pi \nu \overline{\nu} \) Decays, Phys. Rev. D 83 (2011) 034030 [arXiv:1009.0947] [INSPIRE].ADSGoogle Scholar
  83. [83]
    MEG collaboration, A.M. Baldini et al., Search for the lepton flavour violating decay μ + → e+ γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
  84. [84]
    BNL collaboration, D. Ambrose et al., New limit on muon and electron lepton number violation from K L0 → μ ± e decay, Phys. Rev. Lett. 81 (1998) 5734 [hep-ex/9811038] [INSPIRE].
  85. [85]
    E. Gabrielli, Model independent constraints on leptoquarks from rare muon and tau lepton processes, Phys. Rev. D 62 (2000) 055009 [hep-ph/9911539] [INSPIRE].
  86. [86]
    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  87. [87]
    Belle collaboration, J. Grygier et al., Search for \( B\to h\nu \overline{\nu} \) decays with semileptonic tagging at Belle, Phys. Rev. D 96 (2017) 091101 [arXiv:1702.03224] [INSPIRE].
  88. [88]
    BaBar collaboration, J.P. Lees et al., A search for the decay modes B +−h +− τ +− l, Phys. Rev. D 86 (2012) 012004 [arXiv:1204.2852] [INSPIRE].
  89. [89]
    BaBar collaboration, B. Aubert et al., Searches for Lepton Flavor Violation in the Decays τeγ and τμγ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].
  90. [90]
    K. Hayasaka et al., Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced τ + τ Pairs, Phys. Lett. B 687 (2010) 139 [arXiv:1001.3221] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    T.P. Cheng, E. Eichten and L.-F. Li, Higgs Phenomena in Asymptotically Free Gauge Theories, Phys. Rev. D 9 (1974) 2259 [INSPIRE].ADSGoogle Scholar
  92. [92]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].
  93. [93]
    F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  94. [94]
    F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys. 2015 (2015) 840780 [arXiv:1503.04200] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  95. [95]
    S. Weinberg, Effective Gauge Theories, Phys. Lett. 91B (1980) 51 [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    L.J. Hall, Grand Unification of Effective Gauge Theories, Nucl. Phys. B 178 (1981) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    S. Bertolini, L. Di Luzio and M. Malinsky, Intermediate mass scales in the non-supersymmetric SO(10) grand unification: A Reappraisal, Phys. Rev. D 80 (2009) 015013 [arXiv:0903.4049] [INSPIRE].ADSGoogle Scholar
  98. [98]
    D. Chang, R.N. Mohapatra and M.K. Parida, Decoupling Parity and SU(2)-R Breaking Scales: A New Approach to Left-Right Symmetric Models, Phys. Rev. Lett. 52 (1984) 1072 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Service de Physique ThéoriqueUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Department of Physics and AstronomyUniversity of CaliforniaIrvineU.S.A.
  3. 3.Dipartimento di Fisica “E. Fermi”Università di PisaPisaItaly

Personalised recommendations