Advertisement

Journal of High Energy Physics

, 2018:100 | Cite as

Dyson equations for correlators of Wilson loops

  • Diego CorreaEmail author
  • Pablo Pisani
  • Alan Rios Fukelman
  • Konstantin Zarembo
Open Access
Regular Article - Theoretical Physics

Abstract

By considering a Gaussian truncation of \( \mathcal{N} \) = 4 super Yang-Mills, we derive a set of Dyson equations that account for the ladder diagram contribution to connected correlators of circular Wilson loops. We consider different numbers of loops, with different relative orientations. We show that the Dyson equations admit a spectral representation in terms of eigenfunctions of a Schrödinger problem, whose classical limit describes the strong coupling limit of the ladder resummation. We also verify that in supersymmetric cases the exact solution to the Dyson equations reproduces known matrix model results.

Keywords

AdS-CFT Correspondence Supersymmetric Gauge Theory Wilson, ’t Hooft and Polyakov loops Matrix Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    N. Drukker and D.J. Gross, An Exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    K. Zarembo, Localization and AdS/CFT Correspondence, J. Phys. A 50 (2017) 443011 [arXiv:1608.02963] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP 05 (2012) 098 [arXiv:1203.1019] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    N. Gromov and F. Levkovich-Maslyuk, Quark-anti-quark potential in \( \mathcal{N} \) = 4 SYM, JHEP 12 (2016) 122 [arXiv:1601.05679] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    M. Kim, N. Kiryu, S. Komatsu and T. Nishimura, Structure Constants of Defect Changing Operators on the 1/2 BPS Wilson Loop, JHEP 12 (2017) 055 [arXiv:1710.07325] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Cavaglià, N. Gromov and F. Levkovich-Maslyuk, Quantum spectral curve and structure constants in \( \mathcal{N} \) = 4 SYM: cusps in the ladder limit, JHEP 10 (2018) 060 [arXiv:1802.04237] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    K. Zarembo, String breaking from ladder diagrams in SYM theory, JHEP 03 (2001) 042 [hep-th/0103058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    D.H. Correa, P. Pisani and A. Rios Fukelman, Ladder Limit for Correlators of Wilson Loops, JHEP 05 (2018) 168 [arXiv:1803.02153] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    D.J. Gross and H. Ooguri, Aspects of large N gauge theory dynamics as seen by string theory, Phys. Rev. D 58 (1998) 106002 [hep-th/9805129] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    J.K. Erickson, G.W. Semenoff, R.J. Szabo and K. Zarembo, Static potential in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 61 (2000) 105006 [hep-th/9911088] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    I.R. Klebanov, J.M. Maldacena and C.B. Thorn, III, Dynamics of flux tubes in large N gauge theories, JHEP 04 (2006) 024 [hep-th/0602255] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    D. Bykov and K. Zarembo, Ladders for Wilson Loops Beyond Leading Order, JHEP 09 (2012) 057 [arXiv:1206.7117] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J.M. Henn and T. Huber, The four-loop cusp anomalous dimension in \( \mathcal{N} \) = 4 super Yang-Mills and analytic integration techniques for Wilson line integrals, JHEP 09 (2013) 147 [arXiv:1304.6418] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    D. Marmiroli, Resumming planar diagrams for the N = 6 ABJM cusped Wilson loop in light-cone gauge, arXiv:1211.4859 [INSPIRE].
  17. [17]
    M. Bonini, L. Griguolo, M. Preti and D. Seminara, Surprises from the resummation of ladders in the ABJ(M) cusp anomalous dimension, JHEP 05 (2016) 180 [arXiv:1603.00541] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    K. Zarembo, Wilson loop correlator in the AdS/CFT correspondence, Phys. Lett. B 459 (1999) 527 [hep-th/9904149] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    P. Olesen and K. Zarembo, Phase transition in Wilson loop correlator from AdS/CFT correspondence, hep-th/0009210 [INSPIRE].
  20. [20]
    H. Kim, D.K. Park, S. Tamarian and H.J.W. Muller-Kirsten, Gross-Ooguri phase transition at zero and finite temperature: Two circular Wilson loop case, JHEP 03 (2001) 003 [hep-th/0101235] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    J. Plefka and M. Staudacher, Two loops to two loops in N = 4 supersymmetric Yang-Mills theory, JHEP 09 (2001) 031 [hep-th/0108182] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    G. Arutyunov, J. Plefka and M. Staudacher, Limiting geometries of two circular Maldacena-Wilson loop operators, JHEP 12 (2001) 014 [hep-th/0111290] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    N. Drukker and B. Fiol, On the integrability of Wilson loops in AdS 5 × S 5 : Some periodic ansatze, JHEP 01 (2006) 056 [hep-th/0506058] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    H. Dorn, On Wilson loops for two touching circles with opposite orientation, arXiv:1811.00799 [INSPIRE].
  26. [26]
    G. Akemann and P.H. Damgaard, Wilson loops in N = 4 supersymmetric Yang-Mills theory from random matrix theory, Phys. Lett. B 513 (2001) 179 [Erratum ibid. B 524 (2002) 400] [hep-th/0101225] [INSPIRE].
  27. [27]
    S. Giombi, V. Pestun and R. Ricci, Notes on supersymmetric Wilson loops on a two-sphere, JHEP 07 (2010) 088 [arXiv:0905.0665] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    S. Giombi and V. Pestun, Correlators of Wilson Loops and Local Operators from Multi-Matrix Models and Strings in AdS, JHEP 01 (2013) 101 [arXiv:1207.7083] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, More supersymmetric Wilson loops, Phys. Rev. D 76 (2007) 107703 [arXiv:0704.2237] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Wilson loops: From four-dimensional SYM to two-dimensional YM, Phys. Rev. D 77 (2008) 047901 [arXiv:0707.2699] [INSPIRE].ADSGoogle Scholar
  31. [31]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S 3, JHEP 05 (2008) 017 [arXiv:0711.3226] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Giombi and S. Komatsu, Exact Correlators on the Wilson Loop in \( \mathcal{N} \) = 4 SYM: Localization, Defect CFT and Integrability, JHEP 05 (2018) 109 [Erratum ibid. 11 (2018) 123] [arXiv:1802.05201] [INSPIRE].
  33. [33]
    A.A. Migdal, Loop Equations and 1/N Expansion, Phys. Rept. 102 (1983) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Yu. Makeenko, Loop equations in matrix models and in 2-D quantum gravity, Mod. Phys. Lett. A 6 (1991) 1901 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Diego Correa
    • 1
    Email author
  • Pablo Pisani
    • 1
  • Alan Rios Fukelman
    • 2
  • Konstantin Zarembo
    • 3
    • 4
    • 5
    • 6
  1. 1.Instituto de Física La Plata, CONICETUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Institut de Ciències del CosmosUniversitat de BarcelonaBarcelonaSpain
  3. 3.Nordita, Stockholm University and KTH Royal Institute of TechnologyStockholmSweden
  4. 4.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  5. 5.Hamilton Mathematics InstituteTrinity College DublinDublin 2Ireland
  6. 6.ITEPMoscowRussia

Personalised recommendations