Advertisement

Journal of High Energy Physics

, 2018:94 | Cite as

Tensor bounds on the hidden universe

  • Adrián del Rio
  • Ruth Durrer
  • Subodh P. PatilEmail author
Open Access
Regular Article - Theoretical Physics
  • 32 Downloads

Abstract

During single clock inflation, hidden fields (i.e. fields coupled to the inflaton only gravitationally) in their adiabatic vacua can ordinarily only affect observables through virtual effects. After renormalizing background quantities (fixed by observations at some pivot scale), all that remains are logarithmic runnings in correlation functions that are both Planck and slow roll suppressed. In this paper we show how a large number of hidden fields can partially compensate this suppression and generate a potentially observable running in the tensor two point function, consistently inferable courtesy of a large N resummation. We detour to address certain subtleties regarding loop corrections during inflation, extending the analysis of [1]. Our main result is that one can extract bounds on the hidden field content of the universe from bounds on violations of the consistency relation between the tensor spectral index and the tensor to scalar ratio, were primordial tensors ever detected. Such bounds are more competitive than the naive bound inferred from requiring inflation to occur below the strong coupling scale of gravity if deviations from the consistency relation can be bounded to within the sub-percent level. We discuss how one can meaningfully constrain the parameter space of various phenomenological scenarios and constructions that address naturalness with a large number of species (such as ‘N-naturalness’) with CMB observations up to cosmic variance limits, and possibly future 21cm and gravitational wave observations.

Keywords

Cosmology of Theories beyond the SM Renormalization Regularization and Renormalons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Senatore and M. Zaldarriaga, On loops in inflation, JHEP 12 (2010) 008 [arXiv:0912.2734] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].
  3. [3]
    A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389.Google Scholar
  4. [4]
    V.F. Mukhanov and G.V. Chibisov, Quantum fluctuations and a nonsingular universe, JETP Lett. 33 (1981) 532 [Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 549] [INSPIRE].
  5. [5]
    A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett. 30 (1979) 682 [INSPIRE].ADSGoogle Scholar
  6. [6]
    X. Chen and Y. Wang, Large non-gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev. D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].
  7. [7]
    X. Chen and Y. Wang, Quasi-single field inflation and non-gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Saito and T. Kubota, Heavy particle signatures in cosmological correlation functions with tensor modes, JCAP 06 (2018) 009 [arXiv:1804.06974] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    A. del Rio, R. Durrer and S.P. Patil, in preparation.Google Scholar
  10. [10]
    Planck collaboration, N. Aghanim et al., Planck 2015 results. XI. CMB power spectra, likelihoods and robustness of parameters, Astron. Astrophys. 594 (2016) A11 [arXiv:1507.02704] [INSPIRE].
  11. [11]
    G. Dvali, Black holes and large N species solution to the hierarchy problem, Fortsch. Phys. 58 (2010) 528 [arXiv:0706.2050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    G. Dvali and M. Redi, Black hole bound on the number of species and quantum gravity at LHC, Phys. Rev. D 77 (2008) 045027 [arXiv:0710.4344] [INSPIRE].
  13. [13]
    G. Dvali and M. Redi, Phenomenology of 1032 dark sectors, Phys. Rev. D 80 (2009) 055001 [arXiv:0905.1709] [INSPIRE].
  14. [14]
    N. Arkani-Hamed et al., Solving the hierarchy problem at reheating with a large number of degrees of freedom, Phys. Rev. Lett. 117 (2016) 251801 [arXiv:1607.06821] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Adshead, R. Easther and E.A. Lim, The ‘in-in’ formalism and cosmological perturbations, Phys. Rev. D 80 (2009) 083521 [arXiv:0904.4207] [INSPIRE].
  16. [16]
    S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].
  17. [17]
    P. Creminelli et al., The phase transition to slow-roll eternal inflation, JHEP 09 (2008) 036 [arXiv:0802.1067] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    N.D. Birrell and P.C.W. Davies, Quantum fields in curved space,Cambridge Monogr. Math. Phys., Cambridge University Press (1984).Google Scholar
  19. [19]
    C. Cheung et al., The effective field theory of inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    V.F. Mukhanov, Physical foundations of cosmology, Cambridge University Press, Cambridge U.K. (2005).Google Scholar
  21. [21]
    R. Durrer, The Cosmic Microwave Background, Cambridge University Press, Cambridge U.S.A. (2008).Google Scholar
  22. [22]
    S. Weinberg, Cosmology, Oxford University Press, Oxford U.K. (2008).Google Scholar
  23. [23]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
  24. [24]
    BICEP2, Keck Array collaboration, P.A.R. Ade et al., BICEP2/Keck Array X: constraints on primordial gravitational waves using Planck, WMAP and new BICEP2/Keck observations through the 2015 season, Submitted to: Phys. Rev. Lett. (2018) [arXiv:1810.05216] [INSPIRE].
  25. [25]
    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].
  26. [26]
    J. Chluba, J. Hamann and S.P. Patil, Features and new physical scales in primordial observables: theory and observation, Int. J. Mod. Phys. D 24 (2015) 1530023 [arXiv:1505.01834] [INSPIRE].
  27. [27]
    M.S. Sloth, On the one loop corrections to inflation and the CMB anisotropies, Nucl. Phys. B 748 (2006) 149 [astro-ph/0604488] [INSPIRE].
  28. [28]
    P. Adshead, private communication.Google Scholar
  29. [29]
    J.-O. Gong and E.D. Stewart, The density perturbation power spectrum to second order corrections in the slow roll expansion, Phys. Lett. B 510 (2001) 1 [astro-ph/0101225] [INSPIRE].
  30. [30]
    D.J. Schwarz, C.A. Terrero-Escalante and A.A. Garcia, Higher order corrections to primordial spectra from cosmological inflation, Phys. Lett. B 517 (2001) 243 [astro-ph/0106020] [INSPIRE].
  31. [31]
    R. Casadio, F. Finelli, M. Luzzi and G. Venturi, Higher order slow-roll predictions for inflation, Phys. Lett. B 625 (2005) 1 [gr-qc/0506043] [INSPIRE].
  32. [32]
    Y.-S. Song and L. Knox, The detectability of departures from the inflationary consistency equation, Phys. Rev. D 68 (2003) 043518 [astro-ph/0305411] [INSPIRE].
  33. [33]
    K. Danzmann and A. Rudiger, LISA technology — Concept, status, prospects, Class. Quant. Grav. 20 (2003) S1 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    G. Janssen et al., Gravitational wave astronomy with the SKA, PoS(AASKA14)037 [arXiv:1501.00127] [INSPIRE].
  35. [35]
    N. Bartolo et al., Science with the space-based interferometer LISA. IV: Probing inflation with gravitational waves, JCAP 12 (2016) 026 [arXiv:1610.06481] [INSPIRE].
  36. [36]
    K.W. Masui and U.-L. Pen, Primordial gravity wave fossils and their use in testing inflation, Phys. Rev. Lett. 105 (2010) 161302 [arXiv:1006.4181] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G. Dvali, I. Sawicki and A. Vikman, Dark matter via many copies of the standard model, JCAP 08 (2009) 009 [arXiv:0903.0660] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D.V. Vassilevich, Heat kernel expansion: user’s manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    A. Ijjas and P.J. Steinhardt, Implications of Planck2015 for inflationary, ekpyrotic and anamorphic bouncing cosmologies, Class. Quant. Grav. 33 (2016) 044001 [arXiv:1512.09010] [INSPIRE].
  40. [40]
    P. Agrawal, G. Obied, P.J. Steinhardt and C. Vafa, On the cosmological implications of the string swampland, Phys. Lett. B 784 (2018) 271 [arXiv:1806.09718] [INSPIRE].
  41. [41]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, De Sitter space and the swampland, arXiv:1806.08362 [INSPIRE].
  42. [42]
    S. Carlip, Black hole thermodynamics, Int. J. Mod. Phys. D 23 (2014) 1430023 [arXiv:1410.1486] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Adrián del Rio
    • 1
  • Ruth Durrer
    • 2
  • Subodh P. Patil
    • 3
    Email author
  1. 1.Departamento de Fisica Teorica, IFIC. Centro Mixto Universidad de Valencia-CSIC, Facultad de FisicaUniversidad de ValenciaValenciaSpain
  2. 2.Dept. of Theoretical PhysicsUniversity of GenevaGeneva-4Switzerland
  3. 3.Niels Bohr International Academy and Discovery Center, Niels Bohr InstituteCopenhagenDenmark

Personalised recommendations