Advertisement

Journal of High Energy Physics

, 2018:91 | Cite as

Forward Drell-Yan and backward jet production as a probe of the BFKL dynamics

  • Krzysztof Golec-Biernat
  • Leszek Motyka
  • Tomasz StebelEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We propose a new process which probes the BFKL dynamics in the high energy proton-proton scattering, namely the forward Drell-Yan (DY) production accompanied by a backward jet, separated from the DY lepton pair by a large rapidity interval. The proposed process probes higher rapidity differences and smaller transverse momenta than in the Mueller-Navelet jet production. It also offers a possibility of measuring new observables like lepton angular distribution coefficients in the DY lepton pair plus jet production.

Keywords

Jets QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L.N. Lipatov, Reggeization of the Vector Meson and the Vacuum Singularity in Nonabelian Gauge Theories, Sov. J. Nucl. Phys. 23 (1976) 338 [INSPIRE].Google Scholar
  2. [2]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon Processes in the Yang-Mills Theory, Sov. Phys. JETP 44 (1976) 443 [INSPIRE].ADSGoogle Scholar
  3. [3]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].Google Scholar
  5. [5]
    L.N. Lipatov, Small x physics in perturbative QCD, Phys. Rept. 286 (1997) 131 [hep-ph/9610276] [INSPIRE].
  6. [6]
    A.H. Mueller and H. Navelet, An Inclusive Minijet Cross-Section and the Bare Pomeron in QCD, Nucl. Phys. B 282 (1987) 727 [INSPIRE].
  7. [7]
    V. Del Duca and C.R. Schmidt, Dijet production at large rapidity intervals, Phys. Rev. D 49 (1994) 4510 [hep-ph/9311290] [INSPIRE].
  8. [8]
    W.J. Stirling, Production of jet pairs at large relative rapidity in hadron hadron collisions as a probe of the perturbative Pomeron, Nucl. Phys. B 423 (1994) 56 [hep-ph/9401266] [INSPIRE].
  9. [9]
    V. Del Duca and C.R. Schmidt, BFKL versus O(α s3) corrections to large rapidity dijet production, Phys. Rev. D 51 (1995) 2150 [hep-ph/9407359] [INSPIRE].
  10. [10]
    D0 collaboration, S. Abachi et al., The Azimuthal decorrelation of jets widely separated in rapidity, Phys. Rev. Lett. 77 (1996) 595 [hep-ex/9603010] [INSPIRE].
  11. [11]
    D0 collaboration, B. Abbott et al., Probing BFKL dynamics in the dijet cross section at large rapidity intervals in pp collisions at \( \sqrt{s}=1800 \) GeV and 630-GeV, Phys. Rev. Lett. 84 (2000) 5722 [hep-ex/9912032] [INSPIRE].
  12. [12]
    ATLAS collaboration, Measurement of dijet production with a veto on additional central jet activity in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, JHEP 09 (2011) 053 [arXiv:1107.1641] [INSPIRE].
  13. [13]
    CMS collaboration, Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 72 (2012) 2216 [arXiv:1204.0696] [INSPIRE].
  14. [14]
    ATLAS collaboration, Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Eur. Phys. J. C 74 (2014) 3117 [arXiv:1407.5756] [INSPIRE].
  15. [15]
    CMS collaboration, Azimuthal decorrelation of jets widely separated in rapidity in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 08 (2016) 139 [arXiv:1601.06713] [INSPIRE].
  16. [16]
    J. Kwiecinski, A.D. Martin, L. Motyka and J. Outhwaite, Azimuthal decorrelation of forward and backward jets at the Tevatron, Phys. Lett. B 514 (2001) 355 [hep-ph/0105039] [INSPIRE].
  17. [17]
    A. Sabio Vera, The Effect of NLO conformal spins in azimuthal angle decorrelation of jet pairs, Nucl. Phys. B 746 (2006) 1 [hep-ph/0602250] [INSPIRE].
  18. [18]
    C. Marquet and C. Royon, Azimuthal decorrelation of Mueller-Navelet jets at the Tevatron and the LHC, Phys. Rev. D 79 (2009) 034028 [arXiv:0704.3409] [INSPIRE].
  19. [19]
    V.S. Fadin, M.I. Kotsky and R. Fiore, Gluon Reggeization in QCD in the next-to-leading order, Phys. Lett. B 359 (1995) 181 [INSPIRE].
  20. [20]
    V.S. Fadin and L.N. Lipatov, Next-to-leading corrections to the BFKL equation from the gluon and quark production, Nucl. Phys. B 477 (1996) 767 [hep-ph/9602287] [INSPIRE].
  21. [21]
    V.S. Fadin, M.I. Kotsky and L.N. Lipatov, One-loop correction to the BFKL kernel from two gluon production, Phys. Lett. B 415 (1997) 97 [INSPIRE].
  22. [22]
    V.S. Fadin, R. Fiore, A. Flachi and M.I. Kotsky, Quark-anti-quark contribution to the BFKL kernel, Phys. Lett. B 422 (1998) 287 [hep-ph/9711427] [INSPIRE].
  23. [23]
    V.S. Fadin and L.N. Lipatov, BFKL Pomeron in the next-to-leading approximation, Phys. Lett. B 429 (1998) 127 [hep-ph/9802290] [INSPIRE].
  24. [24]
    J. Bartels, D. Colferai and G.P. Vacca, The NLO jet vertex for Mueller-Navelet and forward jets: The Quark part, Eur. Phys. J. C 24 (2002) 83 [hep-ph/0112283] [INSPIRE].
  25. [25]
    J. Bartels, D. Colferai and G.P. Vacca, The NLO jet vertex for Mueller-Navelet and forward jets: The Gluon part, Eur. Phys. J. C 29 (2003) 235 [hep-ph/0206290] [INSPIRE].
  26. [26]
    A. Sabio Vera and F. Schwennsen, The Azimuthal decorrelation of jets widely separated in rapidity as a test of the BFKL kernel, Nucl. Phys. B 776 (2007) 170 [hep-ph/0702158] [INSPIRE].
  27. [27]
    D. Colferai, F. Schwennsen, L. Szymanowski and S. Wallon, Mueller Navelet jets at LHC — complete NLL BFKL calculation, JHEP 12 (2010) 026 [arXiv:1002.1365] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    F. Caporale, D.Yu. Ivanov, B. Murdaca, A. Papa and A. Perri, The next-to-leading order jet vertex for Mueller-Navelet and forward jets revisited, JHEP 02 (2012) 101 [arXiv:1112.3752] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    B. Ducloue, L. Szymanowski and S. Wallon, Confronting Mueller-Navelet jets in NLL BFKL with LHC experiments at 7 TeV, JHEP 05 (2013) 096 [arXiv:1302.7012] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    B. Ducloué, L. Szymanowski and S. Wallon, Evidence for high-energy resummation effects in Mueller-Navelet jets at the LHC, Phys. Rev. Lett. 112 (2014) 082003 [arXiv:1309.3229] [INSPIRE].
  31. [31]
    F. Caporale, D.Yu. Ivanov, B. Murdaca and A. Papa, Mueller-Navelet jets in next-to-leading order BFKL: theory versus experiment, Eur. Phys. J. C 74 (2014) 3084 [Erratum ibid. C 75 (2015) 535] [arXiv:1407.8431] [INSPIRE].
  32. [32]
    S.J. Brodsky, G.P. Lepage and P.B. Mackenzie, On the Elimination of Scale Ambiguities in Perturbative Quantum Chromodynamics, Phys. Rev. D 28 (1983) 228 [INSPIRE].
  33. [33]
    F. Caporale, B. Murdaca, A. Sabio Vera and C. Salas, Scale choice and collinear contributions to Mueller-Navelet jets at LHC energies, Nucl. Phys. B 875 (2013) 134 [arXiv:1305.4620] [INSPIRE].
  34. [34]
    F.G. Celiberto, D.Yu. Ivanov, B. Murdaca and A. Papa, Mueller-Navelet Jets at LHC: BFKL Versus High-Energy DGLAP, Eur. Phys. J. C 75 (2015) 292 [arXiv:1504.08233] [INSPIRE].
  35. [35]
    J.R. Andersen, V. Del Duca, F. Maltoni and W.J. Stirling, W boson production with associated jets at large rapidities, JHEP 05 (2001) 048 [hep-ph/0105146] [INSPIRE].
  36. [36]
    R. Boussarie, B. Ducloué, L. Szymanowski and S. Wallon, Forward J/ψ and very backward jet inclusive production at the LHC, Phys. Rev. D 97 (2018) 014008 [arXiv:1709.01380] [INSPIRE].
  37. [37]
    B.-W. Xiao and F. Yuan, BFKL and Sudakov Resummation in Higgs Boson Plus Jet Production with Large Rapidity Separation, Phys. Lett. B 782 (2018) 28 [arXiv:1801.05478] [INSPIRE].
  38. [38]
    A.D. Bolognino, F.G. Celiberto, D.Y. Ivanov, M.M.A. Mohammed and A. Papa, Hadron-jet correlations in high-energy hadronic collisions at the LHC, Eur. Phys. J. C 78 (2018) 772 [arXiv:1808.05483] [INSPIRE].
  39. [39]
    C.S. Lam and W.-K. Tung, A Systematic Approach to Inclusive Lepton Pair Production in Hadronic Collisions, Phys. Rev. D 18 (1978) 2447 [INSPIRE].
  40. [40]
    C.S. Lam and W.-K. Tung, A Parton Model Relation Sans QCD Modifications in Lepton Pair Productions, Phys. Rev. D 21 (1980) 2712 [INSPIRE].
  41. [41]
    L. Motyka, M. Sadzikowski and T. Stebel, Twist expansion of Drell-Yan structure functions in color dipole approach, JHEP 05 (2015) 087 [arXiv:1412.4675] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    L. Motyka, M. Sadzikowski and T. Stebel, Lam-Tung relation breaking in Z 0 hadroproduction as a probe of parton transverse momentum, Phys. Rev. D 95 (2017) 114025 [arXiv:1609.04300] [INSPIRE].
  43. [43]
    D. Brzeminski, L. Motyka, M. Sadzikowski and T. Stebel, Twist decomposition of Drell-Yan structure functions: phenomenological implications, JHEP 01 (2017) 005 [arXiv:1611.04449] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    S.J. Brodsky, A. Hebecker and E. Quack, The Drell-Yan process and factorization in impact parameter space, Phys. Rev. D 55 (1997) 2584 [hep-ph/9609384] [INSPIRE].
  45. [45]
    B.Z. Kopeliovich, J. Raufeisen and A.V. Tarasov, The Color dipole picture of the Drell-Yan process, Phys. Lett. B 503 (2001) 91 [hep-ph/0012035] [INSPIRE].
  46. [46]
    B.Z. Kopeliovich, J. Raufeisen, A.V. Tarasov and M.B. Johnson, Nuclear effects in the Drell-Yan process at very high-energies, Phys. Rev. C 67 (2003) 014903 [hep-ph/0110221] [INSPIRE].
  47. [47]
    F. Gelis and J. Jalilian-Marian, Dilepton production from the color glass condensate, Phys. Rev. D 66 (2002) 094014 [hep-ph/0208141] [INSPIRE].
  48. [48]
    W. Schäfer and A. Szczurek, Low mass Drell-Yan production of lepton pairs at forward directions at the LHC: a hybrid approach, Phys. Rev. D 93 (2016) 074014 [arXiv:1602.06740] [INSPIRE].
  49. [49]
    F.G. Celiberto, D. Gordo Gómez and A. Sabio Vera, Forward Drell-Yan production at the LHC in the BFKL formalism with collinear corrections, Phys. Lett. B 786 (2018) 201 [arXiv:1808.09511] [INSPIRE].
  50. [50]
    B. Andersson, G. Gustafson, H. Kharraziha and J. Samuelsson, Structure Functions and General Final State Properties in the Linked Dipole Chain Model, Z. Phys. C 71 (1996) 613 [INSPIRE].
  51. [51]
    J. Kwiecinski, A.D. Martin and P.J. Sutton, Constraints on gluon evolution at small x, Z. Phys. C 71 (1996) 585 [hep-ph/9602320] [INSPIRE].
  52. [52]
    J. Kwiecinski, A.D. Martin and A.M. Stasto, A Unified BFKL and GLAP description of F 2 data, Phys. Rev. D 56 (1997) 3991 [hep-ph/9703445] [INSPIRE].
  53. [53]
    G.P. Salam, A Resummation of large subleading corrections at small x, JHEP 07 (1998) 019 [hep-ph/9806482] [INSPIRE].
  54. [54]
    M. Ciafaloni, D. Colferai and G.P. Salam, Renormalization group improved small x equation, Phys. Rev. D 60 (1999) 114036 [hep-ph/9905566] [INSPIRE].
  55. [55]
    G.P. Salam, An Introduction to leading and next-to-leading BFKL, Acta Phys. Polon. B 30 (1999) 3679 [hep-ph/9910492] [INSPIRE].
  56. [56]
    J. Kwiecinski and L. Motyka, Diffractive J/ψ production in high-energy gamma gamma collisions as a probe of the QCD Pomeron, Phys. Lett. B 438 (1998) 203 [hep-ph/9806260] [INSPIRE].
  57. [57]
    P. Faccioli, C. Lourenco, J. Seixas and H.K. Wohri, Towards the experimental clarification of quarkonium polarization, Eur. Phys. J. C 69 (2010) 657 [arXiv:1006.2738] [INSPIRE].
  58. [58]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute of Nuclear Physics PANKrakówPoland
  2. 2.Institute of PhysicsJagiellonian UniversityKrakówPoland
  3. 3.Physics Department, Brookhaven National LaboratoryUptonU.S.A.

Personalised recommendations