Advertisement

Journal of High Energy Physics

, 2018:89 | Cite as

Probing pseudo Nambu-Goldstone boson dark matter at loop level

  • Koji Ishiwata
  • Takashi TomaEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

In the standard model extended by a single complex scalar boson with a softly broken global U(1) symmetry, a pseudo Nambu-Goldstone boson becomes a candidate for dark matter. In this paper, we discuss the direct detection of the pseudo Nambu-Goldstone boson dark matter. Since the tree-level amplitude for dark matter-nucleon scattering vanishes, higher order quantum corrections for the amplitude should be taken into account. We perform the calculation at the next-to-leading order in QCD in a systematic manner.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM Global Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Planck collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  2. [2]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  3. [3]
    XENON collaboration, E. Aprile et al., Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  4. [4]
    C. Gross, O. Lebedev and T. Toma, Cancellation mechanism for dark-matter-nucleon interaction, Phys. Rev. Lett. 119 (2017) 191801 [arXiv:1708.02253] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Berlin, S. Gori, T. Lin and L.-T. Wang, Pseudoscalar portal dark matter, Phys. Rev. D 92 (2015) 015005 [arXiv:1502.06000] [INSPIRE].
  6. [6]
    G. Arcadi, M. Lindner, F.S. Queiroz, W. Rodejohann and S. Vogl, Pseudoscalar mediators: a WIMP model at the neutrino floor, JCAP 03 (2018) 042 [arXiv:1711.02110] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T. Abe, M. Fujiwara and J. Hisano, Loop corrections to dark matter direct detection in a pseudoscalar mediator dark matter model, arXiv:1810.01039 [INSPIRE].
  8. [8]
    J. Hisano, K. Ishiwata and N. Nagata, QCD effects on direct detection of Wino dark matter, JHEP 06 (2015) 097 [arXiv:1504.00915] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    DARWIN collaboration, J. Aalbers et al., DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
  10. [10]
    A. Brignole, Radiative corrections to the supersymmetric neutral Higgs boson masses, Phys. Lett. B 281 (1992) 284 [INSPIRE].
  11. [11]
    J. Hisano, K. Ishiwata and N. Nagata, A complete calculation for direct detection of Wino dark matter, Phys. Lett. B 690 (2010) 311 [arXiv:1004.4090] [INSPIRE].
  12. [12]
    J. Hisano, K. Ishiwata and N. Nagata, Gluon contribution to the dark matter direct detection, Phys. Rev. D 82 (2010) 115007 [arXiv:1007.2601] [INSPIRE].
  13. [13]
    J. Hisano, R. Nagai and N. Nagata, Effective theories for dark matter nucleon scattering, JHEP 05 (2015) 037 [arXiv:1502.02244] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    R.D. Young and A.W. Thomas, Octet baryon masses and sigma terms from an SU(3) chiral extrapolation, Phys. Rev. D 81 (2010) 014503 [arXiv:0901.3310] [INSPIRE].
  15. [15]
    JLQCD collaboration, H. Ohki et al., Nucleon strange quark content from N f = 2 + 1 lattice QCD with exact chiral symmetry, Phys. Rev. D 87 (2013) 034509 [arXiv:1208.4185] [INSPIRE].
  16. [16]
    J.F. Owens, A. Accardi and W. Melnitchouk, Global parton distributions with nuclear and finite-Q 2 corrections, Phys. Rev. D 87 (2013) 094012 [arXiv:1212.1702] [INSPIRE].
  17. [17]
    K. Endo and K. Ishiwata, Direct detection of singlet dark matter in classically scale-invariant standard model, Phys. Lett. B 749 (2015) 583 [arXiv:1507.01739] [INSPIRE].
  18. [18]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  19. [19]
    C.-Y. Chen, S. Dawson and I.M. Lewis, Exploring resonant di-Higgs boson production in the Higgs singlet model, Phys. Rev. D 91 (2015) 035015 [arXiv:1410.5488] [INSPIRE].
  20. [20]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  21. [21]
    D. Azevedo, M. Duch, B. Grzadkowski, D. Huang, M. Iglicki and R. Santos, One-loop contribution to dark matter-nucleon scattering in the pseudoscalar dark matter model, arXiv:1810.06105 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsKanazawa UniversityKanazawaJapan
  2. 2.Physik-Department T30dTechnische Universität MünchenGarchingGermany

Personalised recommendations