Advertisement

Journal of High Energy Physics

, 2018:88 | Cite as

Dark matter in (partially) composite Higgs models

  • Tommi Alanne
  • Diogo Buarque FranzosiEmail author
  • Mads T. Frandsen
  • Martin Rosenlyst
Open Access
Regular Article - Theoretical Physics

Abstract

We construct composite and partially composite Higgs models with complex pseudo-Nambu-Goldstone (pNGB) dark matter states from four-dimensional gauge-Yukawa theories with strongly interacting fermions. The fermions are partially gauged under the electroweak symmetry, and the dynamical electroweak symmetry breaking sector is minimal.

The pNGB dark matter particle is stable due to a U(1) technibaryon-like symmetry, also present in the technicolor limit of the models. However, the relic density is particle anti-particle symmetric and due to thermal freeze-out as opposed to the technicolor limit where it is typically due to an asymmetry.

The pNGB Higgs is composite or partially composite depending on the origin of the Standard Model fermion masses, which impacts the dark matter phenomenology. We illustrate the important features with a model example invariant under an SU(4) × SU(2) × U(1) global symmetry.

Keywords

Beyond Standard Model Technicolor and Composite Models Higgs Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Eichten and K.D. Lane, Dynamical breaking of weak interaction symmetries, Phys. Lett. B 90 (1980) 125 [INSPIRE].
  2. [2]
    S. Dimopoulos and L. Susskind, Mass without scalars, Nucl. Phys. B 155 (1979) 237 [INSPIRE].
  3. [3]
    F. Sannino and K. Tuominen, Orientifold theory dynamics and symmetry breaking, Phys. Rev. D 71 (2005) 051901 [hep-ph/0405209] [INSPIRE].
  4. [4]
    D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher representations versus electroweak precision measurements: predictions for CERN LHC, Phys. Rev. D 72 (2005) 055001 [hep-ph/0505059] [INSPIRE].
  5. [5]
    R. Foadi, M.T. Frandsen and F. Sannino, 125 GeV Higgs boson from a not so light technicolor scalar, Phys. Rev. D 87 (2013) 095001 [arXiv:1211.1083] [INSPIRE].
  6. [6]
    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135 [INSPIRE].
  7. [7]
    E.H. Simmons, Phenomenology of a technicolor model with heavy scalar doublet, Nucl. Phys. B 312 (1989) 253 [INSPIRE].
  8. [8]
    S. Samuel, Bosonic technicolor, Nucl. Phys. B 347 (1990) 625 [INSPIRE].
  9. [9]
    A. Kagan and S. Samuel, The family mass hierarchy problem in bosonic technicolor, Phys. Lett. B 252 (1990) 605 [INSPIRE].
  10. [10]
    C.D. Carone, Technicolor with a 125 GeV Higgs boson, Phys. Rev. D 86 (2012) 055011 [arXiv:1206.4324] [INSPIRE].
  11. [11]
    T. Alanne, S. Di Chiara and K. Tuominen, LHC data and aspects of new physics, JHEP 01 (2014) 041 [arXiv:1303.3615] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. 136 (1984) 183 [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    J. Galloway, A.L. Kagan and A. Martin, A UV complete partially composite-PNGB Higgs, Phys. Rev. D 95 (2017) 035038 [arXiv:1609.05883] [INSPIRE].
  14. [14]
    A. Agugliaro, O. Antipin, D. Becciolini, S. De Curtis and M. Redi, UV complete composite Higgs models, Phys. Rev. D 95 (2017) 035019 [arXiv:1609.07122] [INSPIRE].
  15. [15]
    T. Alanne, D. Buarque Franzosi and M.T. Frandsen, A partially composite Goldstone Higgs, Phys. Rev. D 96 (2017) 095012 [arXiv:1709.10473] [INSPIRE].
  16. [16]
    T. Alanne, D. Buarque Franzosi, M.T. Frandsen, M.L.A. Kristensen, A. Meroni and M. Rosenlyst, Partially composite Higgs models: phenomenology and RG analysis, JHEP 01 (2018) 051 [arXiv:1711.10410] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].
  18. [18]
    M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [INSPIRE].
  19. [19]
    G. Ferretti and D. Karateev, Fermionic UV completions of composite Higgs models, JHEP 03 (2014) 077 [arXiv:1312.5330] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G. Ferretti, UV completions of partial compositeness: the case for a SU(4) gauge group, JHEP 06 (2014) 142 [arXiv:1404.7137] [INSPIRE].
  21. [21]
    G. Cacciapaglia and F. Sannino, Fundamental composite (Goldstone) Higgs dynamics, JHEP 04 (2014) 111 [arXiv:1402.0233] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Belyaev, M.S. Brown, R. Foadi and M.T. Frandsen, The technicolor Higgs in the light of LHC data, Phys. Rev. D 90 (2014) 035012 [arXiv:1309.2097] [INSPIRE].
  23. [23]
    S. Nussinov, Technocosmology: could a technibaryon excess provide a ‘natural’ missing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].
  24. [24]
    S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].
  25. [25]
    S.B. Gudnason, C. Kouvaris and F. Sannino, Dark matter from new technicolor theories, Phys. Rev. D 74 (2006) 095008 [hep-ph/0608055] [INSPIRE].
  26. [26]
    T.A. Ryttov and F. Sannino, Ultra minimal technicolor and its dark matter TIMP, Phys. Rev. D 78 (2008) 115010 [arXiv:0809.0713] [INSPIRE].
  27. [27]
    M.T. Frandsen and F. Sannino, iTIMP: isotriplet Technicolor Interacting Massive Particle as dark matter, Phys. Rev. D 81 (2010) 097704 [arXiv:0911.1570] [INSPIRE].
  28. [28]
    M.T. Frandsen, S. Sarkar and K. Schmidt-Hoberg, Light asymmetric dark matter from new strong dynamics, Phys. Rev. D 84 (2011) 051703 [arXiv:1103.4350] [INSPIRE].
  29. [29]
    A. Belyaev, M.T. Frandsen, S. Sarkar and F. Sannino, Mixed dark matter from technicolor, Phys. Rev. D 83 (2011) 015007 [arXiv:1007.4839] [INSPIRE].
  30. [30]
    H. Ishida, S. Matsuzaki and Y. Yamaguchi, Bosonic-seesaw portal dark matter, PTEP 2017 (2017) 103B01 [arXiv:1610.07137] [INSPIRE].
  31. [31]
    M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite scalar dark matter, JHEP 07 (2012) 015 [arXiv:1204.2808] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Carmona and M. Chala, Composite dark sectors, JHEP 06 (2015) 105 [arXiv:1504.00332] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    N. Fonseca, R. Zukanovich Funchal, A. Lessa and L. Lopez-Honorez, Dark matter constraints on composite Higgs models, JHEP 06 (2015) 154 [arXiv:1501.05957] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G. Ballesteros, A. Carmona and M. Chala, Exceptional composite dark matter, Eur. Phys. J. C 77 (2017) 468 [arXiv:1704.07388] [INSPIRE].
  35. [35]
    Y. Wu, T. Ma, B. Zhang and G. Cacciapaglia, Composite dark matter and Higgs, JHEP 11 (2017) 058 [arXiv:1703.06903] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T. Ma and G. Cacciapaglia, Fundamental composite 2HDM: SU(N ) with 4 flavours, JHEP 03 (2016) 211 [arXiv:1508.07014] [INSPIRE].
  37. [37]
    C. Cai, G. Cacciapaglia and H.-H. Zhang, Vacuum alignment in a composite 2HDM, arXiv:1805.07619 [INSPIRE].
  38. [38]
    R. Balkin, M. Ruhdorfer, E. Salvioni and A. Weiler, Charged composite scalar dark matter, JHEP 11 (2017) 094 [arXiv:1707.07685] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    F. Sannino, A. Strumia, A. Tesi and E. Vigiani, Fundamental partial compositeness, JHEP 11 (2016) 029 [arXiv:1607.01659] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    D.D. Dietrich and F. Sannino, Conformal window of SU(N) gauge theories with fermions in higher dimensional representations, Phys. Rev. D 75 (2007) 085018 [hep-ph/0611341] [INSPIRE].
  41. [41]
    M.A. Luty, Strong conformal dynamics at the LHC and on the lattice, JHEP 04 (2009) 050 [arXiv:0806.1235] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. Galloway, M.A. Luty, Y. Tsai and Y. Zhao, Induced electroweak symmetry breaking and supersymmetric naturalness, Phys. Rev. D 89 (2014) 075003 [arXiv:1306.6354] [INSPIRE].
  43. [43]
    R. Arthur, V. Drach, M. Hansen, A. Hietanen, C. Pica and F. Sannino, SU(2) gauge theory with two fundamental flavors: a minimal template for model building, Phys. Rev. D 94 (2016) 094507 [arXiv:1602.06559] [INSPIRE].
  44. [44]
    R. Arthur, V. Drach, A. Hietanen, C. Pica and F. Sannino, SU(2) gauge theory with two fundamental flavours: scalar and pseudoscalar spectrum, arXiv:1607.06654 [INSPIRE].
  45. [45]
    C. Pica, V. Drach, M. Hansen and F. Sannino, Composite Higgs dynamics on the lattice, EPJ Web Conf. 137 (2017) 10005 [arXiv:1612.09336] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    T.A. DeGrand, D. Hackett, W.I. Jay, E.T. Neil, Y. Shamir and B. Svetitsky, Towards partial compositeness on the lattice: baryons with fermions in multiple representations, PoS(LATTICE2016)219 (2016) [arXiv:1610.06465] [INSPIRE].
  47. [47]
    V. Ayyar et al., Baryon spectrum of SU(4) composite Higgs theory with two distinct fermion representations, Phys. Rev. D 97 (2018) 114505 [arXiv:1801.05809] [INSPIRE].
  48. [48]
    R. Lewis, C. Pica and F. Sannino, Light asymmetric dark matter on the lattice: SU(2) technicolor with two fundamental flavors, Phys. Rev. D 85 (2012) 014504 [arXiv:1109.3513] [INSPIRE].
  49. [49]
    A. Hietanen, C. Pica, F. Sannino and U.I. Sondergaard, Orthogonal technicolor with isotriplet dark matter on the lattice, Phys. Rev. D 87 (2013) 034508 [arXiv:1211.5021] [INSPIRE].
  50. [50]
    A. Hietanen, R. Lewis, C. Pica and F. Sannino, Composite Goldstone dark matter: experimental predictions from the lattice, JHEP 12 (2014) 130 [arXiv:1308.4130] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Lattice Strong Dynamics (LSD) collaboration, T. Appelquist et al., Composite bosonic baryon dark matter on the lattice: SU(4) baryon spectrum and the effective Higgs interaction, Phys. Rev. D 89 (2014) 094508 [arXiv:1402.6656] [INSPIRE].
  52. [52]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].
  53. [53]
    D. Buarque Franzosi, G. Cacciapaglia, H. Cai, A. Deandrea and M. Frandsen, Vector and axial-vector resonances in composite models of the Higgs boson, JHEP 11 (2016) 076 [arXiv:1605.01363] [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    J. Galloway, J.A. Evans, M.A. Luty and R.A. Tacchi, Minimal conformal technicolor and precision electroweak tests, JHEP 10 (2010) 086 [arXiv:1001.1361] [INSPIRE].zbMATHGoogle Scholar
  55. [55]
    J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].
  56. [56]
    A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].
  57. [57]
    M. Gell-Mann, R.J. Oakes and B. Renner, Behavior of current divergences under SU(3) × SU(3), Phys. Rev. 175 (1968) 2195 [INSPIRE].
  58. [58]
    A. Belyaev et al., Di-boson signatures as standard candles for partial compositeness, JHEP 01 (2017) 094 [Erratum ibid. 12 (2017) 088] [arXiv:1610.06591] [INSPIRE].
  59. [59]
    T. Alanne, M.T. Frandsen and D. Buarque Franzosi, Testing a dynamical origin of Standard Model fermion masses, Phys. Rev. D 94 (2016) 071703 [arXiv:1607.01440] [INSPIRE].
  60. [60]
    T. Alanne, N. Bizot, G. Cacciapaglia and F. Sannino, Classification of NLO operators for composite Higgs models, Phys. Rev. D 97 (2018) 075028 [arXiv:1801.05444] [INSPIRE].
  61. [61]
    J. Barnard, T. Gherghetta and T.S. Ray, UV descriptions of composite Higgs models without elementary scalars, JHEP 02 (2014) 002 [arXiv:1311.6562] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    XENON collaboration, E. Aprile et al., First dark matter search results from the XENON1T experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  63. [63]
    XENON collaboration, E. Aprile et al., Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  64. [64]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].
  65. [65]
    J.M. Alarcon, J. Martin Camalich and J.A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].
  66. [66]
    J.M. Alarcon, L.S. Geng, J. Martin Camalich and J.A. Oller, The strangeness content of the nucleon from effective field theory and phenomenology, Phys. Lett. B 730 (2014) 342 [arXiv:1209.2870] [INSPIRE].
  67. [67]
    M.T. Frandsen, U. Haisch, F. Kahlhoefer, P. Mertsch and K. Schmidt-Hoberg, Loop-induced dark matter direct detection signals from gamma-ray lines, JCAP 10 (2012) 033 [arXiv:1207.3971] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A. Crivellin and U. Haisch, Dark matter direct detection constraints from gauge bosons loops, Phys. Rev. D 90 (2014) 115011 [arXiv:1408.5046] [INSPIRE].
  69. [69]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  70. [70]
    A. Birkedal, K. Matchev and M. Perelstein, Dark matter at colliders: a model independent approach, Phys. Rev. D 70 (2004) 077701 [hep-ph/0403004] [INSPIRE].
  71. [71]
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on light Majorana dark matter from colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].
  72. [72]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].
  73. [73]
    CMS collaboration, Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 03 (2017) 061 [Erratum ibid. 09 (2017) 106] [arXiv:1701.02042] [INSPIRE].
  74. [74]
    ATLAS collaboration, Search for dark matter in events with a Z boson and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 012004 [arXiv:1404.0051] [INSPIRE].
  75. [75]
    I. Brivio et al., Non-linear Higgs portal to dark matter, JHEP 04 (2016) 141 [arXiv:1511.01099] [INSPIRE].ADSGoogle Scholar
  76. [76]
    R. Foadi, M.T. Frandsen and F. Sannino, Technicolor dark matter, Phys. Rev. D 80 (2009) 037702 [arXiv:0812.3406] [INSPIRE].
  77. [77]
    J. Ellis, A. Fowlie, L. Marzola and M. Raidal, Statistical analyses of Higgs- and Z-portal dark matter models, Phys. Rev. D 97 (2018) 115014 [arXiv:1711.09912] [INSPIRE].
  78. [78]
    G. Cacciapaglia, H. Cai, A. Deandrea, T. Flacke, S.J. Lee and A. Parolini, Composite scalars at the LHC: the Higgs, the sextet and the octet, JHEP 11 (2015) 201 [arXiv:1507.02283] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    A. Arbey, G. Cacciapaglia, H. Cai, A. Deandrea, S. Le Corre and F. Sannino, Fundamental composite electroweak dynamics: status at the LHC, Phys. Rev. D 95 (2017) 015028 [arXiv:1502.04718] [INSPIRE].
  80. [80]
    G. Cacciapaglia, G. Ferretti, T. Flacke and H. Serodio, Revealing timid pseudo-scalars with taus at the LHC, Eur. Phys. J. C 78 (2018) 724 [arXiv:1710.11142] [INSPIRE].
  81. [81]
    Fermi-LAT collaboration, M. Ackermann et al., Searching for dark matter annihilation from Milky Way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Tommi Alanne
    • 1
  • Diogo Buarque Franzosi
    • 2
    Email author
  • Mads T. Frandsen
    • 3
  • Martin Rosenlyst
    • 3
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Institut für Theoretische PhysikUniversität GöttingenGöttingenGermany
  3. 3.CP3-Origins, University of Southern DenmarkOdense MDenmark

Personalised recommendations