Advertisement

Journal of High Energy Physics

, 2018:85 | Cite as

Expanding universe and dynamical compactification using Yang-Mills instantons

  • Kyung Kiu Kim
  • Seoktae Koh
  • Hyun Seok YangEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We consider an eight-dimensional Einstein-Yang-Mills theory to explore whether Yang-Mills instantons formed in extra dimensions can induce the dynamical instability of our four-dimensional spacetime. We show that the Yang-Mills instantons in extra dimensions can trigger the expansion of our universe in four-dimensional spacetime as well as the dynamical compactification of extra dimensions. We also discuss a possibility to realize a reheating mechanism via the quantum back-reaction from the contracting tiny internal space with a smeared instanton.

Keywords

Cosmology of Theories beyond the SM Compactification and String Models Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].ADSzbMATHGoogle Scholar
  2. [2]
    A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A.D. Linde, Chaotic Inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    V.F. Mukhanov and G.V. Chibisov, Quantum Fluctuations and a Nonsingular Universe, JETP Lett. 33 (1981) 532 [INSPIRE].ADSGoogle Scholar
  6. [6]
    W. Hu and S. Dodelson, Cosmic microwave background anisotropies, Ann. Rev. Astron. Astrophys. 40 (2002) 171 [astro-ph/0110414] [INSPIRE].
  7. [7]
    M. Tegmark, M. Zaldarriaga and A.J.S. Hamilton, Towards a refined cosmic concordance model: Joint 11 parameter constraints from CMB and large scale structure, Phys. Rev. D 63 (2001) 043007 [astro-ph/0008167] [INSPIRE].
  8. [8]
    V. Springel et al., Simulating the joint evolution of quasars, galaxies and their large-scale distribution, Nature 435 (2005) 629 [astro-ph/0504097] [INSPIRE].
  9. [9]
    E.W. Kolb and M.S. Turner, The Early Universe, Addison-Wesley, Redwood City, CA, (1990).zbMATHGoogle Scholar
  10. [10]
    R.H. Brandenberger, Conceptual Problems of Inflationary Cosmology and a New Approach to Cosmological Structure Formation, Lect. Notes Phys. 738 (2008) 393 [hep-th/0701111] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Ijjas, P.J. Steinhardt and A. Loeb, Inflationary paradigm in trouble after Planck2013, Phys. Lett. B 723 (2013) 261 [arXiv:1304.2785] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.E. Lidsey, D. Wands and E.J. Copeland, Superstring cosmology, Phys. Rept. 337 (2000) 343 [hep-th/9909061] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    M. Gasperini and G. Veneziano, The pre-big bang scenario in string cosmology, Phys. Rept. 373 (2003) 1 [hep-th/0207130] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    L. McAllister and E. Silverstein, String Cosmology: A Review, Gen. Rel. Grav. 40 (2008) 565 [arXiv:0710.2951] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    D. Baumann and L. McAllister, Inflation and String Theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, (2015), [arXiv:1404.2601] [INSPIRE].
  16. [16]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  17. [17]
    M. Rummel and A. Westphal, A sufficient condition for de Sitter vacua in type IIB string theory, JHEP 01 (2012) 020 [arXiv:1107.2115] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Cicoli, D. Klevers, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter, JHEP 05 (2014) 001 [arXiv:1312.0014] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    S. Kachru, R. Kallosh, A.D. Linde, J.M. Maldacena, L.P. McAllister and S.P. Trivedi, Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary Constraints on Type IIA String Theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    T. Wrase and M. Zagermann, On Classical de Sitter Vacua in String Theory, Fortsch. Phys. 58 (2010) 906 [arXiv:1003.0029] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    D. Kutasov, T. Maxfield, I. Melnikov and S. Sethi, Constraining de Sitter Space in String Theory, Phys. Rev. Lett. 115 (2015) 071305 [arXiv:1504.00056] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland and the Missing Corner, PoS(TASI2017)015 (2017) [arXiv:1711.00864] [INSPIRE].
  24. [24]
    U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys. D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].
  27. [27]
    S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, arXiv:1807.05193 [INSPIRE].
  28. [28]
    H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  29. [29]
    P. Agrawal, G. Obied, P.J. Steinhardt and C. Vafa, On the Cosmological Implications of the String Swampland, Phys. Lett. B 784 (2018) 271 [arXiv:1806.09718] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    J.P. Conlon, Moduli Stabilisation and Applications in IIB String Theory, Fortsch. Phys. 55 (2007) 287 [hep-th/0611039] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    Q. Shafi and C. Wetterich, Cosmology from Higher Dimensional Gravity, Phys. Lett. B 129 (1983) 387 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Randjbar-Daemi, A. Salam and J.A. Strathdee, On Kaluza-Klein Cosmology, Phys. Lett. B 135 (1984) 388 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    E.W. Kolb, D. Lindley and D. Seckel, More DimensionsLess Entropy, Phys. Rev. D 30 (1984) 1205 [INSPIRE].ADSGoogle Scholar
  35. [35]
    Y. Okada, Inflation in Kaluza-Klein Cosmology, Phys. Lett. B 150 (1985) 103 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    K. Maeda, Cosmological solutions with Calabi-Yau compactification, Phys. Lett. B 166 (1986) 103.MathSciNetGoogle Scholar
  37. [37]
    F.S. Accetta, M. Gleiser, R. Holman and E.W. Kolb, Stable Compactifications, Nucl. Phys. B 276 (1986) 501 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Mazumdar, Extra dimensions and inflation, Phys. Lett. B 469 (1999) 55 [hep-ph/9902381] [INSPIRE].
  39. [39]
    P.J. Steinhardt and D. Wesley, Dark Energy, Inflation and Extra Dimensions, Phys. Rev. D 79 (2009) 104026 [arXiv:0811.1614] [INSPIRE].ADSGoogle Scholar
  40. [40]
    D. Sahdev, Towards a Realistic Kaluza-Klein Cosmology, Phys. Lett. B 137 (1984) 155 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J.J. Levin, Inflation from extra dimensions, Phys. Lett. B 343 (1995) 69 [gr-qc/9411041] [INSPIRE].
  42. [42]
    A. Chodos and S.L. Detweiler, Where Has the Fifth-Dimension Gone?, Phys. Rev. D 21 (1980) 2167 [INSPIRE].ADSGoogle Scholar
  43. [43]
    T. Dereli and R.W. Tucker, Dynamical Reduction of Internal Dimensions in the Early Universe, Phys. Lett. B 125 (1983) 133 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R. Holman, E.W. Kolb, S.L. Vadas and Y. Wang, Extended inflation from higher dimensional theories, Phys. Rev. D 43 (1991) 995 [INSPIRE].ADSGoogle Scholar
  45. [45]
    A.S. Majumdar and S.K. Sethi, Extended inflation from Kaluza-Klein theories, Phys. Rev. D 46 (1992) 5315 [INSPIRE].ADSGoogle Scholar
  46. [46]
    A.S. Majumdar, T.R. Seshadri and S.K. Sethi, Stable compactification and inflation from higher dimensional Brans-Dicke theory, Phys. Lett. B 312 (1993) 67 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    A.S. Majumdar, Constraints on higher dimensional models for viable extended inflation, Phys. Rev. D 55 (1997) 6092 [gr-qc/9703070] [INSPIRE].
  48. [48]
    J.-A. Gu and W.-Y.P. Hwang, Accelerating universe as from the evolution of extra dimensions, Phys. Rev. D 66 (2002) 024003 [astro-ph/0112565] [INSPIRE].
  49. [49]
    N. Mohammedi, Dynamical compactification, standard cosmology and the accelerating universe, Phys. Rev. D 65 (2002) 104018 [hep-th/0202119] [INSPIRE].ADSMathSciNetGoogle Scholar
  50. [50]
    Z. Horvath and L. Palla, Spontaneous Compactification andMonopolesin Higher Dimensions, Nucl. Phys. B 142 (1978) 327 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    S. Randjbar-Daemi, A. Salam and J.A. Strathdee, Spontaneous Compactification in Six-Dimensional Einstein-Maxwell Theory, Nucl. Phys. B 214 (1983) 491 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    A. Salam and E. Sezgin, Chiral Compactification on Minkowski ×S 2 of N = 2 Einstein-Maxwell Supergravity in Six-Dimensions, Phys. Lett. B 147 (1984) 47 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Randjbar-Daemi, A. Salam and J.A. Strathdee, Instanton Induced Compactification and Fermion Chirality, Phys. Lett. B 132 (1983) 56 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    S. Randjbar-Daemi, A. Salam and J.A. Strathdee, Stability of Instanton Induced Compactification in Eight-dimensions, Nucl. Phys. B 242 (1984) 447 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    R. Rajaraman, Solitons and Instantons, North-Holland. Amsterdam, (1982).Google Scholar
  56. [56]
    L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114 [INSPIRE].
  57. [57]
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, Effective field theory, black holes and the cosmological constant, Phys. Rev. Lett. 82 (1999) 4971 [hep-th/9803132] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    M. Li, A model of holographic dark energy, Phys. Lett. B 603 (2004) 1 [hep-th/0403127] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    R.P. Geroch, Topology in general relativity, J. Math. Phys. 8 (1967) 782 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    F.J. Tipler, Singularities and Causality Violation, Annals Phys. 108 (1977) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    F.J. Tipler, Topology Change in Kaluza-Klein and Superstring Theories, Phys. Lett. B 165 (1985) 67 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Commun. Pure Appl. Math. 39 (1986) S257.MathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    G. Tian, Gauge theory and calibrated geometry, I, Annals Math. 151 (2000) 193 [math/0010015].
  64. [64]
    H.S. Yang and S. Yun, Calabi-Yau Manifolds, Hermitian Yang-Mills Instantons and Mirror Symmetry, Adv. High Energy Phys. 2017 (2017) 7962426 [arXiv:1107.2095] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  65. [65]
    M.R. Douglas, R. Reinbacher and S.-T. Yau, Branes, bundles and attractors: Bogomolov and beyond, [math/0604597].
  66. [66]
    E. Bergshoeff and M. de Roo, Supersymmetric Chern-Simons Terms in Ten-dimensions, Phys. Lett. B 218 (1989) 210 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    E.A. Bergshoeff and M. de Roo, The Quartic Effective Action of the Heterotic String and Supersymmetry, Nucl. Phys. B 328 (1989) 439 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    X. de la Ossa and E.E. Svanes, Connections, Field Redefinitions and Heterotic Supergravity, JHEP 12 (2014) 008 [arXiv:1409.3347] [INSPIRE].CrossRefGoogle Scholar
  69. [69]
    H. Kihara, M. Nitta, M. Sasaki, C.-M. Yoo and I. Zaballa, Dynamical Compactification and Inflation in Einstein-Yang-Mills Theory with Higher Derivative Coupling, Phys. Rev. D 80 (2009) 066004 [arXiv:0906.4493] [INSPIRE].ADSGoogle Scholar
  70. [70]
    E. O Colgain and I. Zaballa, Compactification driven Hilltop Inflation in Einstein-Yang-Mills, Phys. Rev. D 81 (2010) 083504 [arXiv:0912.3349] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomySejong UniversitySeoulKorea
  2. 2.Department of Science EducationJeju National UniversityJejuKorea
  3. 3.Center for Quantum SpacetimeSogang UniversitySeoulKorea

Personalised recommendations