Advertisement

Journal of High Energy Physics

, 2018:82 | Cite as

A supersymmetric exotic field theory in (1+1) dimensions: one loop soliton quantum mass corrections

  • A. R. AguirreEmail author
  • G. Flores-Hidalgo
Open Access
Regular Article - Theoretical Physics

Abstract

We consider one loop quantum corrections to soliton mass for the \( \mathcal{N}=1 \) supersymmetric extension of the (1+1)-dimensional scalar field theory with the potential U (ϕ) = ϕ2 cos2 (ln ϕ2). First, we compute the one loop quantum soliton mass correction of the bosonic sector. To do that, we regularize implicitly such quantity by subtracting and adding its corresponding tadpole graph contribution, and use the renormalization prescription that the added term vanishes with the corresponding counterterms. As a result we get a finite unambiguous formula for the soliton quantum mass corrections up to one loop order. Afterwards, the computation for the supersymmetric case is extended straightforwardly and we obtain for the one loop quantum correction of the SUSY kink mass the expected value previously derived for the SUSY sine-Gordon and ϕ4 models. However, we also have found that for a particular value of the parameters, contrary to what was expected, the introduction of supersymmetry in this model worsens ultraviolet divergences rather than improving them.

Keywords

Solitons Monopoles and Instantons Supersymmetry and Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R.F. Dashen, B. Hasslacher and A. Neveu, Nonperturbative methods and extended hadron models in field theory 2. Two-dimensional models and extended hadrons, Phys. Rev. D 10 (1974) 4130 [INSPIRE].
  2. [2]
    L.D. Faddeev and V.E. Korepin, Quantum theory of solitons: preliminary version, Phys. Rept. 42 (1978) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. D’Adda and P. Di Vecchia, Supersymmetry and instantons, Phys. Lett. B 73 (1978) 162 [INSPIRE].
  4. [4]
    A. D’Adda, R. Horsley and P. Di Vecchia, Supersymmetric magnetic monopoles and dyons, Phys. Lett. B 76 (1978) 298 [INSPIRE].
  5. [5]
    R. Horsley, Quantum mass corrections to supersymmetric soliton theories in two-dimensions, Nucl. Phys. B 151 (1979) 399 [INSPIRE].
  6. [6]
    J.F. Schonfeld, Soliton masses in supersymmetric theories, Nucl. Phys. B 161 (1979) 125 [INSPIRE].
  7. [7]
    S. Rouhani, Do the quantum corrections to the soliton mass vanish?, Nucl. Phys. B 182 (1981) 462 [INSPIRE].
  8. [8]
    R.K. Kaul and R. Rajaraman, Soliton energies in supersymmetric theories, Phys. Lett. B 131 (1983) 357 [INSPIRE].
  9. [9]
    H. Yamagishi, Soliton mass distributions in (1 + 1)-dimensional supersymmetric theories, Phys. Lett. B 147 (1984) 425 [INSPIRE].
  10. [10]
    A. Chatterjee and P. Majumdar, Supersymmetric kinks and the Witten-Olive bound, Phys. Rev. D 30 (1984) 844 [INSPIRE].
  11. [11]
    A.K. Chatterjee and P. Majumdar, Boundary effects on the soliton mass in (1 + 1)-dimensional supersymmetric theories, Phys. Lett. B 159 (1985) 37 [INSPIRE].
  12. [12]
    A. Uchiyama, Cancellation of quantum correction for supersymmetric solitons in (1 + 1)-dimensions, Nucl. Phys. B 244 (1984) 57 [INSPIRE].
  13. [13]
    A. Uchiyama, Nonconservation of supercharges and extra mass correction for supersymmetric solitons in (1 + 1)-dimensions, Prog. Theor. Phys. 75 (1986) 1214 [INSPIRE].
  14. [14]
    A. Uchiyama, Saturation of quantum Bogomolny bound for supersymmetric solitons in (1 + 1)-dimensions, Nucl. Phys. B 278 (1986) 121 [INSPIRE].
  15. [15]
    C. Imbimbo and S. Mukhi, Index theorems and supersymmetry in the soliton sector, Nucl. Phys. B 247 (1984) 471 [INSPIRE].
  16. [16]
    A. Rebhan and P. van Nieuwenhuizen, No saturation of the quantum Bogomolnyi bound by two-dimensional supersymmetric solitons, Nucl. Phys. B 508 (1997) 449 [hep-th/9707163] [INSPIRE].
  17. [17]
    H. Nastase, M.A. Stephanov, P. van Nieuwenhuizen and A. Rebhan, Topological boundary conditions, the BPS bound and elimination of ambiguities in the quantum mass of solitons, Nucl. Phys. B 542 (1999) 471 [hep-th/9802074] [INSPIRE].
  18. [18]
    M.A. Shifman, A.I. Vainshtein and M.B. Voloshin, Anomaly and quantum corrections to solitons in two-dimensional theories with minimal supersymmetry, Phys. Rev. D 59 (1999) 045016 [hep-th/9810068] [INSPIRE].
  19. [19]
    N. Graham and R.L. Jaffe, Energy, central charge and the BPS bound for (1 + 1)-dimensional supersymmetric solitons, Nucl. Phys. B 544 (1999) 432 [hep-th/9808140] [INSPIRE].
  20. [20]
    A. Litvintsev and P. van Nieuwenhuizen, Once more on the BPS bound for the SUSY kink, hep-th/0010051 [INSPIRE].
  21. [21]
    G.H. Flores and N.F. Svaiter, Reconstructing bidimensional scalar field theory models, hep-th/0107043 [INSPIRE].
  22. [22]
    M.A. Lohe and D.M. O’Brien, Soliton mass corrections and explicit models in two-dimensions, Phys. Rev. D 23 (1981) 1771 [INSPIRE].
  23. [23]
    A. Kumar and C.N. Kumar, Constructing kink solutions using isospectral Hamiltonian approach, in National Conference on Nonlinear systems and Dynamics, (2003).Google Scholar
  24. [24]
    A. Alonso-Izquierdo, J. Mateos Guilarte and M.S. Plyushchay, Kink mass quantum shifts from SUSY quantum mechanics, Annals Phys. 331 (2013) 269 [arXiv:1212.0818] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    R.K. Kaul and R. Rajaraman, Classical solitons with no quantum counterparts and their supersymmetric revival, Pramana 24 (1985) 837 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H. Weigel, Vacuum polarization energy for general backgrounds in one space dimension, Phys. Lett. B 766 (2017) 65 [arXiv:1612.08641] [INSPIRE].
  27. [27]
    T. Romanczukiewicz, Could the primordial radiation be responsible for vanishing of topological defects?, Phys. Lett. B 773 (2017) 295 [arXiv:1706.05192] [INSPIRE].
  28. [28]
    L.-H. Chan, Effective action expansion in perturbation theory, Phys. Rev. Lett. 54 (1985) 1222 [Erratum ibid. 56 (1986) 404] [INSPIRE].
  29. [29]
    G.V. Dunne, Derivative expansion and soliton masses, Phys. Lett. B 467 (1999) 238 [hep-th/9907208] [INSPIRE].
  30. [30]
    N. Graham and R.L. Jaffe, Unambiguous one loop quantum energies of (1 + 1)-dimensional bosonic field configurations, Phys. Lett. B 435 (1998) 145 [hep-th/9805150] [INSPIRE].
  31. [31]
    N. Graham, M. Quandt and H. Weigel, Spectral methods in quantum field theory, Lect. Notes Phys. 777 (2009) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    A.S. Goldhaber, A. Litvintsev and P. van Nieuwenhuizen, Mode regularization of the SUSY sphaleron and kink: zero modes and discrete gauge symmetry, Phys. Rev. D 64 (2001) 045013 [hep-th/0011258] [INSPIRE].
  33. [33]
    M. Bordag, A.S. Goldhaber, P. van Nieuwenhuizen and D. Vassilevich, Heat kernels and zeta function regularization for the mass of the SUSY kink, Phys. Rev. D 66 (2002) 125014 [hep-th/0203066] [INSPIRE].
  34. [34]
    A. Parnachev and L.G. Yaffe, One loop quantum energy densities of domain wall field configurations, Phys. Rev. D 62 (2000) 105034 [hep-th/0005269] [INSPIRE].
  35. [35]
    A. Rebhan, P. van Nieuwenhuizen and R. Wimmer, One loop surface tensions of (supersymmetric) kink domain walls from dimensional regularization, New J. Phys. 4 (2002) 31 [hep-th/0203137] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    L.J. Boya and J. Casahorran, General scalar bidimensional models including kinks, Annals Phys. 196 (1989) 361 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    G. Barton, Levinson’s theorem in one-dimension: heuristics, J. Phys. A 18 (1985) 479 [INSPIRE].
  38. [38]
    M.S. de Bianchi, Levinson’s theorem, zero-energy resonances, and time delay in one-dimensional scattering systems, J. Math. Phys. 35 (1994) 2719.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    F. Cooper, A. Khare and U. Sukhatme, Supersymmetry and quantum mechanics, Phys. Rept. 251 (1995) 267 [hep-th/9405029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    A. Khare and U.P. Sukhatme, Scattering amplitudes for supersymmetric shape invariant potentials by operator methods, J. Phys. A 21 (1988) L501 [INSPIRE].
  41. [41]
    Z.-Q. Ma, S.-H. Dong and L.-Y. Wang, Levinson theorem for the Dirac equation in one dimension, Phys. Rev. A 74 (2006) 012712.Google Scholar
  42. [42]
    S. S. Gousheh, Levinson theorem for the Dirac equation in the presence of solitons in (1 + 1) dimensions, Phys. Rev. A 65 (2002) 032719.Google Scholar
  43. [43]
    S.S. Gousheh, A. Mohammadi and L. Shahkarami, Casimir energy for a coupled fermion-kink system and its stability, Phys. Rev. D 87 (2013) 045017 [arXiv:1209.4490] [INSPIRE].
  44. [44]
    F. Charmchi, S.S. Gousheh and S.M. Hosseini, One-loop quantum correction to the mass of the supersymmetric kink in (1 + 1) dimensions using the exact spectra and the phase shifts, J. Phys. A 47 (2014) 335401 [arXiv:1402.1934] [INSPIRE].
  45. [45]
    H.J. de Vega, Two-loop quantum corrections to the soliton mass in two-dimensional scalar field theories, Nucl. Phys. B 115 (1976) 411 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute of Physics and ChemistryFederal University of ItajubáItajubáBrazil

Personalised recommendations