Advertisement

Journal of High Energy Physics

, 2018:80 | Cite as

Holographic fermions in striped phases

  • Sera Cremonini
  • Li LiEmail author
  • Jie Ren
Open Access
Regular Article - Theoretical Physics

Abstract

We examine the fermionic response in a holographic model of a low temperature striped phase, working for concreteness with the setup we studied in [1, 2], in which a U(1) symmetry and translational invariance are broken spontaneously at the same time. We include an ionic lattice that breaks translational symmetry explicitly in the UV of the theory. Thus, this construction realizes spontaneous crystallization on top of a background lattice. We solve the Dirac equation for a probe fermion in the associated background geometry using numerical techniques, and explore the interplay between spontaneous and explicit breaking of translations. We note that in our model the breaking of the U(1) symmetry doesn’t play a role in the analysis of the fermionic spectral function. We investigate under which conditions a Fermi surface can form and focus in particular on how the ionic lattice affects its structure. When the ionic lattice becomes sufficiently strong the spectral weight peaks broaden, denoting a gradual disappearance of the Fermi surface along the symmetry breaking direction. This phenomenon occurs even in the absence of spontaneously generated stripes. The resulting Fermi surface appears to consist of detached segments reminiscent of Fermi arcs.

Keywords

Holography and condensed matter physics (AdS/CMT) Gauge-gravity correspondence Spontaneous Symmetry Breaking 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Cremonini, L. Li and J. Ren, Holographic pair and charge density waves, Phys. Rev. D 95 (2017) 041901 [arXiv:1612.04385] [INSPIRE].
  2. [2]
    S. Cremonini, L. Li and J. Ren, Intertwined orders in holography: pair and charge density waves, JHEP 08 (2017) 081 [arXiv:1705.05390] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. Henningson and K. Sfetsos, Spinors and the AdS/CFT correspondence, Phys. Lett. B 431 (1998) 63 [hep-th/9803251] [INSPIRE].
  4. [4]
    W. Mueck and K.S. Viswanathan, Conformal field theory correlators from classical field theory on anti-de Sitter space. 2. Vector and spinor fields, Phys. Rev. D 58 (1998) 106006 [hep-th/9805145] [INSPIRE].
  5. [5]
    S.-S. Lee, A Non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].
  6. [6]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].
  7. [7]
    M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].
  8. [8]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].
  9. [9]
    N. Iqbal, H. Liu and M. Mezei, Lectures on holographic non-Fermi liquids and quantum phase transitions, in Proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2010). String Theory and Its Applications: From meV to the Planck Scale, Boulder U.S.A. (2010), pg. 707 [arXiv:1110.3814] [INSPIRE].
  10. [10]
    B. Keimer, S.A. Kivelson, M.R. Norman, S. Uchida and J. Zaanen, From quantum matter to high-temperature superconductivity in copper oxides, Nature 518 (2015) 179.ADSCrossRefGoogle Scholar
  11. [11]
    A. Donos and S.A. Hartnoll, Interaction-driven localization in holography, Nature Phys. 9 (2013) 649 [arXiv:1212.2998] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040 [arXiv:1311.3292] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Bagrov, N. Kaplis, A. Krikun, K. Schalm and J. Zaanen, Holographic fermions at strong translational symmetry breaking: a Bianchi-VII case study, JHEP 11 (2016) 057 [arXiv:1608.03738] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Y. Liu, K. Schalm, Y.-W. Sun and J. Zaanen, Lattice Potentials and Fermions in Holographic non Fermi-Liquids: Hybridizing Local Quantum Criticality, JHEP 10 (2012) 036 [arXiv:1205.5227] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Y. Ling, C. Niu, J.-P. Wu, Z.-Y. Xian and H.-b. Zhang, Holographic Fermionic Liquid with Lattices, JHEP 07 (2013) 045 [arXiv:1304.2128] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M.H. Hamidian et al., Detection of a Cooper-Pair Density Wave in Bi 2 Sr 2 CaCu 2 O 8+x, Nature 532 (2016) 343 [arXiv:1511.08124].
  18. [18]
    S. Rajasekaran et al., Probing optically silent superfluid stripes in cuprates, Science 359 (2018) 575 [arXiv:1705.06112].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S.D. Edkins et al., Magnetic-field Induced Pair Density Wave State in the Cuprate Vortex Halo, arXiv:1802.04673.
  20. [20]
    E. Fradkin, S.A. Kivelson and J.M. Tranquada, Colloquium: Theory of intertwined orders in high temperature superconductors, Rev. Mod. Phys. 87 (2015) 457 [arXiv:1407.4480].ADSCrossRefGoogle Scholar
  21. [21]
    S. Baruch and D. Orgad, Spectral signatures of modulated d-wave superconducting phases, Phys. Rev. B 77 (2008) 174502 [arXiv:0801.2436].
  22. [22]
    E. Berg, E. Fradkin, S.A. Kivelson and J. Tranquada, Striped superconductors: how the cuprates intertwine spin, charge and superconducting orders, arXiv:0901.4826.
  23. [23]
    P.A. Lee, Amperean pairing and the pseudogap phase of cuprate superconductors, Phys. Rev. X 4 (2014) 031017 [arXiv:1401.0519].
  24. [24]
    R. Soto-Garrido, G.Y. Cho and E. Fradkin, Quasi one dimensional pair density wave superconducting state, Phys. Rev. B 91 (2015) 195102 [arXiv:1502.07349] [INSPIRE].
  25. [25]
    F. Aprile and J.G. Russo, Models of holographic superconductivity, Phys. Rev. D 81 (2010) 026009 [arXiv:0912.0480] [INSPIRE].
  26. [26]
    F. Aprile, S. Franco, D. Rodriguez-Gomez and J.G. Russo, Phenomenological models of holographic superconductors and Hall currents, JHEP 05 (2010) 102 [arXiv:1003.4487] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    R.-G. Cai, S. He, L. Li and L.-F. Li, Entanglement entropy and Wilson loop in Stúckelberg holographic insulator/superconductor model, JHEP 10 (2012) 107 [arXiv:1209.1019] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    E. Kiritsis and L. Li, Holographic competition of phases and superconductivity, JHEP 01 (2016) 147 [arXiv:1510.00020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Donos and J.P. Gauntlett, Holographic charge density waves, Phys. Rev. D 87 (2013) 126008 [arXiv:1303.4398] [INSPIRE].
  30. [30]
    Y. Ling, C. Niu, J. Wu, Z. Xian and H.-b. Zhang, Metal-insulator transition by holographic charge density waves, Phys. Rev. Lett. 113 (2014) 091602 [arXiv:1404.0777] [INSPIRE].
  31. [31]
    M. Headrick, S. Kitchen and T. Wiseman, A New approach to static numerical relativity and its application to Kaluza-Klein black holes, Class. Quant. Grav. 27 (2010) 035002 [arXiv:0905.1822] [INSPIRE].
  32. [32]
    T. Andrade and A. Krikun, Commensurate lock-in in holographic non-homogeneous lattices, JHEP 03 (2017) 168 [arXiv:1701.04625] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    T. Andrade, A. Krikun, K. Schalm and J. Zaanen, Doping the holographic Mott insulator, Nature Phys. 14 (2018) 1049 [arXiv:1710.05791] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C. Cosnier-Horeau and S.S. Gubser, Holographic Fermi surfaces at finite temperature in top-down constructions, Phys. Rev. D 91 (2015) 066002 [arXiv:1411.5384] [INSPIRE].
  35. [35]
    S.S. Gubser and J. Ren, Analytic fermionic Greens functions from holography, Phys. Rev. D 86 (2012) 046004 [arXiv:1204.6315] [INSPIRE].
  36. [36]
    C.P. Herzog and J. Ren, The spin of holographic electrons at nonzero density and temperature, JHEP 06 (2012) 078 [arXiv:1204.0518] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M.R. Norman et al., Destruction of the Fermi Surface in Underdoped High Tc Superconductors, Nature 392 (1998) 157 [cond-mat/9710163].
  38. [38]
    A. Kanigel et al., Evolution of the pseudogap from Fermi arcs to the nodal liquid, Nature Phys. 2 (2006) 447.ADSCrossRefGoogle Scholar
  39. [39]
    A. Kanigel et al., Protected Nodes and the Collapse of Fermi Arcs in High-T c Cuprate Superconductors, Phys. Rev. Lett. 99 (2007) 157001.ADSCrossRefGoogle Scholar
  40. [40]
    B. Withers, Holographic checkerboards, JHEP 09 (2014) 102 [arXiv:1407.1085] [INSPIRE].
  41. [41]
    A. Donos and J.P. Gauntlett, Minimally packed phases in holography, JHEP 03 (2016) 148 [arXiv:1512.06861] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    R.-G. Cai, L. Li, Y.-Q. Wang and J. Zaanen, Intertwined Order and Holography: The Case of Parity Breaking Pair Density Waves, Phys. Rev. Lett. 119 (2017) 181601 [arXiv:1706.01470] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Sachdev, M.A. Metlitski and M. Punk, Antiferromagnetism in metals: from the cuprate superconductors to the heavy fermion materials, J. Phys. Condens. Matter 24 (2012) 294205 [arXiv:1202.4760] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    S. Cremonini, L. Li and J. Ren, to appear.Google Scholar
  45. [45]
    R.-J. Slager, V. Juricic and B. Roy, Dissolution of topological Fermi arcs in a dirty Weyl semimetal, Phys. Rev. B 96 (2017) 201401 [arXiv:1703.09706] [INSPIRE].
  46. [46]
    I.M. Vishik, Photoemission perspective on pseudogap, superconducting fluctuations, and charge order in cuprates: a review of recent progress, Rep. Prog. Phys. 81 (2018) 062501 [arXiv:1803.11228].
  47. [47]
    T. Faulkner, G.T. Horowitz, J. McGreevy, M.M. Roberts and D. Vegh, Photoemissionexperimentson holographic superconductors, JHEP 03 (2010) 121 [arXiv:0911.3402] [INSPIRE].
  48. [48]
    M. Edalati, R.G. Leigh and P.W. Phillips, Dynamically generated Mott gap from holography, Phys. Rev. Lett. 106 (2011) 091602 [arXiv:1010.3238] [INSPIRE].
  49. [49]
    W.-J. Li and H.-b. Zhang, Holographic non-relativistic fermionic fixed point and bulk dipole coupling, JHEP 11 (2011) 018 [arXiv:1110.4559] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    A. Damascelli, Z. Hussain and Z.X. Shen, Angle-resolved photoemission studies of the cuprate superconductors, Rev. Mod. Phys. 75 (2003) 473 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Tallon and J. Loram, The doping dependence of T what is the real high-T c phase diagram?, Physica C 349 (2001) 53 [cond-mat/0005063].
  52. [52]
    J.C. Campuzano et al., Electronic spectra and their relation to the (π, π) collective mode in high-T c superconductors, Phys. Rev. Lett. 83 (1999) 3709 [cond-mat/9906335].
  53. [53]
    A. Abanov and A.V. Chubukov, A relation between the resonance neutron peak and ARPES data in cuprates, Phys. Rev. Lett. 83 (1999) 1652 [cond-mat/9906051].
  54. [54]
    M. Eschrig and M.R. Norman, The neutron resonance: modeling photoemission and tunneling data in the superconducting state of Bi 2 Sr 2 CaCu 2 O 8+d, Phys. Rev. Lett. 85 (2000) 3261 [cond-mat/0005390].
  55. [55]
    J.-W. Chen, Y.-J. Kao and W.-Y. Wen, Peak-Dip-Hump from Holographic Superconductivity, Phys. Rev. D 82 (2010) 026007 [arXiv:0911.2821] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsLehigh UniversityBethlehemU.S.A.
  2. 2.Racah Institute of PhysicsThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations