Journal of High Energy Physics

, 2018:79 | Cite as

Lepton non-universality in B decays and fermion mass structure

  • B. GrinsteinEmail author
  • S. Pokorski
  • G. G. Ross
Open Access
Regular Article - Theoretical Physics


We consider the possibility that the neutral-current B anomalies are due to radiative corrections generated by Yukawa interactions of quarks and leptons with new vector-like quark and lepton electroweak doublets and new Standard Model singlet scalars. We show that the restricted interactions needed can result from an underlying Abelian family symmetry and that the same symmetry can give rise to an acceptable pattern of quark and charged lepton masses and mixings, providing a bridge between the non-universality observed in the B-sector and that of the fermion mass matrices. We construct two simple models, one with a single singlet scalar in which the flavour changing comes from quark and lepton mixing and one with an additional scalar in which the flavour changing can come from both fermion and scalar mixing. We show that for the case the new quarks are much heavier than the new leptons and scalars the B anomalies can be due to box diagrams with couplings in the perturbative regime consistent with the bounds coming from \( {B}_s-{\overline{B}}_s \), \( K-\overline{K} \) and \( D-\overline{D} \) mixing as well as other lepton family number violating processes. The new states can be dark matter candidates and, in the two scalar model with a light scalar of O(60) GeV and vector-like lepton of O(100) GeV, there can be a simultaneous explanation of the B-anomalies, the muon anomalous magnetic moment and the dark matter abundance.


Beyond Standard Model Heavy Quark Physics Quark Masses and SM Parameters 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  2. [2]
    LHCb collaboration, Test of lepton universality with B 0K *0 + decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  3. [3]
    LHCb collaboration, Measurement of Form-Factor-Independent Observables in the Decay B 0K *0 μ + μ , Phys. Rev. Lett. 111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].
  4. [4]
    LHCb collaboration, Angular analysis of the B 0K *0 μ + μ decay using 3 fb −1 of integrated luminosity, JHEP 02 (2016) 104 [arXiv:1512.04442] [INSPIRE].
  5. [5]
    Belle collaboration, S. Wehle et al., Lepton-Flavor-Dependent Angular Analysis of BK * + , Phys. Rev. Lett. 118 (2017) 111801 [arXiv:1612.05014] [INSPIRE].
  6. [6]
    LHCb collaboration, Differential branching fractions and isospin asymmetries of BK (*) μ + μ decays, JHEP 06 (2014) 133 [arXiv:1403.8044] [INSPIRE].
  7. [7]
    LHCb collaboration, Angular analysis and differential branching fraction of the decay B s0 → ϕμ + μ , JHEP 09 (2015) 179 [arXiv:1506.08777] [INSPIRE].
  8. [8]
    W. Altmannshofer, P. Stangl and D.M. Straub, Interpreting Hints for Lepton Flavor Universality Violation, Phys. Rev. D 96 (2017) 055008 [arXiv:1704.05435] [INSPIRE].Google Scholar
  9. [9]
    G. D’Amico et al., Flavour anomalies after the \( {R}_{K^{*}} \) measurement, JHEP 09 (2017) 010 [arXiv:1704.05438] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    G. Hiller and I. Nisandzic, R K and \( {R}_{K^{*}} \) beyond the standard model, Phys. Rev. D 96 (2017) 035003 [arXiv:1704.05444] [INSPIRE].Google Scholar
  11. [11]
    B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, Patterns of New Physics in bsℓ + transitions in the light of recent data, JHEP 01 (2018) 093 [arXiv:1704.05340] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    L.-S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X.-L. Ren and R.-X. Shi, Towards the discovery of new physics with lepton-universality ratios of bsℓℓ decays, Phys. Rev. D 96 (2017) 093006 [arXiv:1704.05446] [INSPIRE].
  13. [13]
    M. Ciuchini et al., On Flavourful Easter eggs for New Physics hunger and Lepton Flavour Universality violation, Eur. Phys. J. C 77 (2017) 688 [arXiv:1704.05447] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    B. Gripaios, M. Nardecchia and S.A. Renner, Linear flavour violation and anomalies in B physics, JHEP 06 (2016) 083 [arXiv:1509.05020] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    J.M. Cline and J.M. Cornell, R(K (∗)) from dark matter exchange, Phys. Lett. B 782 (2018) 232 [arXiv:1711.10770] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    Z. Poh and S. Raby, Vectorlike leptons: Muon g-2 anomaly, lepton flavor violation, Higgs boson decays and lepton nonuniversality, Phys. Rev. D 96 (2017) 015032 [arXiv:1705.07007] [INSPIRE].Google Scholar
  18. [18]
    L. Dhargyal, A simple model to explain the observed muon sector anomalies, small neutrino masses, baryon-genesis and dark-matter, arXiv:1711.09772 [INSPIRE].
  19. [19]
    L. Dhargyal and S.K. Rai, Implications of a vector-like lepton doublet and scalar Leptoquark on R(D (*)), arXiv:1806.01178 [INSPIRE].
  20. [20]
    P. Arnan, L. Hofer, F. Mescia and A. Crivellin, Loop effects of heavy new scalars and fermions in b + μ , JHEP 04 (2017) 043 [arXiv:1608.07832] [INSPIRE].CrossRefGoogle Scholar
  21. [21]
    D. Das, C. Hati, G. Kumar and N. Mahajan, Scrutinizing R-parity violating interactions in light of \( {R}_{K^{\left(*\right)}} \) data, Phys. Rev. D 96 (2017) 095033 [arXiv:1705.09188] [INSPIRE].Google Scholar
  22. [22]
    BaBar collaboration, J.P. Lees et al., Evidence for an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
  23. [23]
    BaBar collaboration, J.P. Lees et al., Measurement of an Excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
  24. [24]
    Belle collaboration, M. Huschle et al., Measurement of the branching ratio of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( \overline{B}\to {D}^{\left(\ast \right)}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
  25. [25]
    Belle collaboration, Y. Sato et al., Measurement of the branching ratio of \( {\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( {\overline{B}}^0\to {D}^{\ast +}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with a semileptonic tagging method, Phys. Rev. D 94 (2016) 072007 [arXiv:1607.07923] [INSPIRE].
  26. [26]
    Belle collaboration, S. Hirose et al., Measurement of the τ lepton polarization and R(D *) in the decay \( \overline{B}\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \), Phys. Rev. Lett. 118 (2017) 211801 [arXiv:1612.00529] [INSPIRE].
  27. [27]
    Belle collaboration, S. Hirose et al., Measurement of the τ lepton polarization and R(D *) in the decay \( \overline{B}\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \) with one-prong hadronic τ decays at Belle, Phys. Rev. D 97 (2018) 012004 [arXiv:1709.00129] [INSPIRE].
  28. [28]
    LHCb collaboration, Measurement of the ratio of branching fractions \( \mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [Erratum ibid. 115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].
  29. [29]
    LHCb collaboration, Measurement of the ratio of the B 0D *− τ + ν τ and B 0D *− μ + ν μ branching fractions using three-prong τ-lepton decays, Phys. Rev. Lett. 120 (2018) 171802 [arXiv:1708.08856] [INSPIRE].
  30. [30]
    LHCb collaboration, Test of Lepton Flavor Universality by the measurement of the B 0D *− τ + ν τ branching fraction using three-prong τ decays, Phys. Rev. D 97 (2018) 072013 [arXiv:1711.02505] [INSPIRE].
  31. [31]
    LHCb collaboration, Measurement of the ratio of branching fractions ℬ(B c+ → J/ψτ + ν τ)/ℬ(B c+ → J/ψμ + ν μ), Phys. Rev. Lett. 120 (2018) 121801 [arXiv:1711.05623] [INSPIRE].
  32. [32]
    R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184 [arXiv:1505.05164] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    G. Hiller and M. Schmaltz, R K and future bsℓℓ physics beyond the standard model opportunities, Phys. Rev. D 90 (2014) 054014 [arXiv:1408.1627] [INSPIRE].Google Scholar
  34. [34]
    R. Barbieri, G. Isidori, A. Pattori and F. Senia, Anomalies in B-decays and U(2) flavour symmetry, Eur. Phys. J. C 76 (2016) 67 [arXiv:1512.01560] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    N. Assad, B. Fornal and B. Grinstein, Baryon Number and Lepton Universality Violation in Leptoquark and Diquark Models, Phys. Lett. B 777 (2018) 324 [arXiv:1708.06350] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    L. Di Luzio, A. Greljo and M. Nardecchia, Gauge leptoquark as the origin of B-physics anomalies, Phys. Rev. D 96 (2017) 115011 [arXiv:1708.08450] [INSPIRE].Google Scholar
  37. [37]
    L. Calibbi, A. Crivellin and T. Li, A model of vector leptoquarks in view of the B-physics anomalies, arXiv:1709.00692 [INSPIRE].
  38. [38]
    R. Barbieri and A. Tesi, B-decay anomalies in Pati-Salam SU(4), Eur. Phys. J. C 78 (2018) 193 [arXiv:1712.06844] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    M. Blanke and A. Crivellin, B Meson Anomalies in a Pati-Salam Model within the Randall-Sundrum Background, Phys. Rev. Lett. 121 (2018) 011801 [arXiv:1801.07256] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    A. Crivellin, C. Greub, F. Saturnino and D. Müller, Importance of Loop Effects in Explaining the Accumulated Evidence for New Physics in B Decays with a Vector Leptoquark, arXiv:1807.02068 [INSPIRE].
  41. [41]
    A. Greljo, D.J. Robinson, B. Shakya and J. Zupan, R(D (*) ) from Wand right-handed neutrinos, JHEP 09 (2018) 169 [arXiv:1804.04642] [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    HFLAV collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
  43. [43]
    MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e + γ decay, Phys. Rev. Lett. 110 (2013) 201801 [arXiv:1303.0754] [INSPIRE].
  44. [44]
    MEG collaboration, F. Cei et al., Latest Results from MEG, PoS(NEUTEL2017)023.Google Scholar
  45. [45]
    CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].
  46. [46]
    ATLAS collaboration, Search for the electroweak production of supersymmetric particles in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Phys. Rev. D 93 (2016) 052002 [arXiv:1509.07152] [INSPIRE].
  47. [47]
    ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb −1 of \( \sqrt{s}=13 \) TeV pp collision data with the ATLAS detector, Phys. Rev. D 97 (2018) 112001 [arXiv:1712.02332] [INSPIRE].
  48. [48]
    SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group and L3 collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  49. [49]
    M. Chala, Direct bounds on heavy toplike quarks with standard and exotic decays, Phys. Rev. D 96 (2017) 015028 [arXiv:1705.03013] [INSPIRE].Google Scholar
  50. [50]
    J. Kawamura, S. Okawa and Y. Omura, Interplay between the bsℓℓ anomalies and dark matter physics, Phys. Rev. D 96 (2017) 075041 [arXiv:1706.04344] [INSPIRE].Google Scholar
  51. [51]
    K. Kowalska and E.M. Sessolo, Expectations for the muon g-2 in simplified models with dark matter, JHEP 09 (2017) 112 [arXiv:1707.00753] [INSPIRE].CrossRefGoogle Scholar
  52. [52]
    L. Calibbi, R. Ziegler and J. Zupan, Minimal models for dark matter and the muon g − 2 anomaly, JHEP 07 (2018) 046 [arXiv:1804.00009] [INSPIRE].MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of California San DiegoLa JollaU.S.A.
  2. 2.Institute of Theoretical Physics, Faculty of PhysicsUniversity of WarsawWarsawPoland
  3. 3.Rudolf Peierls Centre for Theoretical Physics, Clarendon LaboratoryUniversity of OxfordOxfordU.K.

Personalised recommendations