Journal of High Energy Physics

, 2018:78 | Cite as

Holographic compact stars meet gravitational wave constraints

  • Eemeli Annala
  • Christian Ecker
  • Carlos HoyosEmail author
  • Niko Jokela
  • David Rodríguez Fernández
  • Aleksi Vuorinen
Open Access
Regular Article - Theoretical Physics


We investigate a simple holographic model for cold and dense deconfined QCD matter consisting of three quark flavors. Varying the single free parameter of the model and utilizing a Chiral Effective Theory equation of state (EoS) for nuclear matter, we find four different compact star solutions: traditional neutron stars, strange quark stars, as well as two non-standard solutions we refer to as hybrid stars of the second and third kind (HS2 and HS3). The HS2s are composed of a nuclear matter core and a crust made of stable strange quark matter, while the HS3s have both a quark mantle and a nuclear crust on top of a nuclear matter core. For all types of stars constructed, we determine not only their mass-radius relations, but also tidal deformabilities, Love numbers, as well as moments of inertia and the mass distribution. We find that there exists a range of parameter values in our model, for which the novel hybrid stars have properties in very good agreement with all existing bounds on the stationary properties of compact stars. In particular, the tidal deformabilities of these solutions are smaller than those of ordinary neutron stars of the same mass, implying that they provide an excellent fit to the recent gravitational wave data GW170817 of LIGO and Virgo. The assumptions underlying the viability of the different star types, in particular those corresponding to absolutely stable quark matter, are finally discussed at some length.


Holography and quark-gluon plasmas Phase Diagram of QCD 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Lattimer and M. Prakash, The physics of neutron stars, Science 304 (2004) 536 [astro-ph/0405262] [INSPIRE].
  2. [2]
    N. Itoh, Hydrostatic Equilibrium of Hypothetical Quark Stars, Prog. Theor. Phys. 44 (1970) 291 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A.R. Bodmer, Collapsed nuclei, Phys. Rev. D 4 (1971) 1601 [INSPIRE].ADSGoogle Scholar
  4. [4]
    H. Terazawa, Quark shell model and superheavy hypernucleus, in 2nd KEK Symposium on Radiation Dosimetry, Tsukuba, Japan, March 22–23, 1979 (1979) [INSPIRE].
  5. [5]
    E. Farhi and R.L. Jaffe, Strange Matter, Phys. Rev. D 30 (1984) 2379 [INSPIRE].ADSGoogle Scholar
  6. [6]
    E. Witten, Cosmic Separation of Phases, Phys. Rev. D 30 (1984) 272 [INSPIRE].ADSGoogle Scholar
  7. [7]
    E.S. Fraga, R.D. Pisarski and J. Schaffner-Bielich, Small, dense quark stars from perturbative QCD, Phys. Rev. D 63 (2001) 121702 [hep-ph/0101143] [INSPIRE].
  8. [8]
    F. Weber, Strange quark matter and compact stars, Prog. Part. Nucl. Phys. 54 (2005) 193 [astro-ph/0407155] [INSPIRE].
  9. [9]
    S. Postnikov, M. Prakash and J.M. Lattimer, Tidal Love Numbers of Neutron and Self-Bound Quark Stars, Phys. Rev. D 82 (2010) 024016 [arXiv:1004.5098] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Drago, A. Lavagno and G. Pagliara, Can very compact and very massive neutron stars both exist?, Phys. Rev. D 89 (2014) 043014 [arXiv:1309.7263] [INSPIRE].ADSGoogle Scholar
  11. [11]
    N. Brambilla et al., QCD and Strongly Coupled Gauge Theories: Challenges and Perspectives, Eur. Phys. J. C 74 (2014) 2981 [arXiv:1404.3723] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    P. de Forcrand, Simulating QCD at finite density, PoS(LAT2009)010 (2009) [arXiv:1005.0539] [INSPIRE].
  13. [13]
    B.A. Freedman and L.D. McLerran, Fermions and Gauge Vector Mesons at Finite Temperature and Density. 3. The Ground State Energy of a Relativistic Quark Gas, Phys. Rev. D 16 (1977) 1169 [INSPIRE].
  14. [14]
    A. Vuorinen, The Pressure of QCD at finite temperatures and chemical potentials, Phys. Rev. D 68 (2003) 054017 [hep-ph/0305183] [INSPIRE].
  15. [15]
    A. Kurkela, P. Romatschke and A. Vuorinen, Cold Quark Matter, Phys. Rev. D 81 (2010) 105021 [arXiv:0912.1856] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Kurkela and A. Vuorinen, Cool quark matter, Phys. Rev. Lett. 117 (2016) 042501 [arXiv:1603.00750] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Buballa, NJLS model analysis of quark matter at large density, Phys. Rept. 407 (2005) 205 [hep-ph/0402234] [INSPIRE].
  18. [18]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].
  23. [23]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].CrossRefzbMATHGoogle Scholar
  26. [26]
    A. Adams, L.D. Carr, T. Schäfer, P. Steinberg and J.E. Thomas, Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas and Holographic Duality, New J. Phys. 14 (2012) 115009 [arXiv:1205.5180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    O. Bergman, G. Lifschytz and M. Lippert, Holographic Nuclear Physics, JHEP 11 (2007) 056 [arXiv:0708.0326] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Rozali, H.-H. Shieh, M. Van Raamsdonk and J. Wu, Cold Nuclear Matter In Holographic QCD, JHEP 01 (2008) 053 [arXiv:0708.1322] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    K.-Y. Kim, S.-J. Sin and I. Zahed, Dense holographic QCD in the Wigner-Seitz approximation, JHEP 09 (2008) 001 [arXiv:0712.1582] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Y. Kim, C.-H. Lee, I.J. Shin and M.-B. Wan, Holographic equations of state and astrophysical compact objects, JHEP 10 (2011) 111 [arXiv:1108.6139] [INSPIRE].ADSzbMATHGoogle Scholar
  31. [31]
    V. Kaplunovsky, D. Melnikov and J. Sonnenschein, Baryonic Popcorn, JHEP 11 (2012) 047 [arXiv:1201.1331] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K. Ghoroku, K. Kubo, M. Tachibana and F. Toyoda, Holographic cold nuclear matter and neutron star, Int. J. Mod. Phys. A 29 (2014) 1450060 [arXiv:1311.1598] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S.-w. Li, A. Schmitt and Q. Wang, From holography towards real-world nuclear matter, Phys. Rev. D 92 (2015) 026006 [arXiv:1505.04886] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Elliot-Ripley, P. Sutcliffe and M. Zamaklar, Phases of kinky holographic nuclear matter, JHEP 10 (2016) 088 [arXiv:1607.04832] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    P. Burikham, E. Hirunsirisawat and S. Pinkanjanarod, Thermodynamic Properties of Holographic Multiquark and the Multiquark Star, JHEP 06 (2010) 040 [arXiv:1003.5470] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    Y. Kim, I.J. Shin, C.-H. Lee and M.-B. Wan, Explicit flavor symmetry breaking and holographic compact stars, J. Korean Phys. Soc. 66 (2015) 578 [arXiv:1404.3474] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C. Hoyos, D. Rodríguez Fernández, N. Jokela and A. Vuorinen, Holographic quark matter and neutron stars, Phys. Rev. Lett. 117 (2016) 032501 [arXiv:1603.02943] [INSPIRE].
  38. [38]
    C. Hoyos, N. Jokela, D. Rodríguez Fernández and A. Vuorinen, Breaking the sound barrier in AdS/CFT, Phys. Rev. D 94 (2016) 106008 [arXiv:1609.03480] [INSPIRE].
  39. [39]
    C. Ecker, C. Hoyos, N. Jokela, D. Rodríguez Fernández and A. Vuorinen, Stiff phases in strongly coupled gauge theories with holographic duals, JHEP 11 (2017) 031 [arXiv:1707.00521] [INSPIRE].
  40. [40]
    M.G. Alford, K. Rajagopal and F. Wilczek, QCD at finite baryon density: Nucleon droplets and color superconductivity, Phys. Lett. B 422 (1998) 247 [hep-ph/9711395] [INSPIRE].
  41. [41]
    M.G. Alford, K. Rajagopal and F. Wilczek, Color flavor locking and chiral symmetry breaking in high density QCD, Nucl. Phys. B 537 (1999) 443 [hep-ph/9804403] [INSPIRE].
  42. [42]
    M.G. Alford, A. Schmitt, K. Rajagopal and T. Schäfer, Color superconductivity in dense quark matter, Rev. Mod. Phys. 80 (2008) 1455 [arXiv:0709.4635] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A.F. Faedo, D. Mateos, C. Pantelidou and J. Tarrio, Towards a Holographic Quark Matter Crystal, JHEP 10 (2017) 139 [arXiv:1707.06989] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    N. Jokela, M. Järvinen and J. Remes, Holographic QCD in the Veneziano limit and neutron stars, arXiv:1809.07770 [INSPIRE].
  45. [45]
    K. Hebeler, J.M. Lattimer, C.J. Pethick and A. Schwenk, Equation of state and neutron star properties constrained by nuclear physics and observation, Astrophys. J. 773 (2013) 11 [arXiv:1303.4662] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    Virgo and LIGO Scientific collaborations, B. Abbott et al., GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].
  47. [47]
    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    A. Karch and A. O’Bannon, Holographic thermodynamics at finite baryon density: Some exact results, JHEP 11 (2007) 074 [arXiv:0709.0570] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite chemical potential, JHEP 11 (2007) 085 [arXiv:0709.1225] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    J. Erdmenger, M. Kaminski, P. Kerner and F. Rust, Finite baryon and isospin chemical potential in AdS/CFT with flavor, JHEP 11 (2008) 031 [arXiv:0807.2663] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Superconductivity from D3/D7: Holographic Pion Superfluid, JHEP 11 (2009) 070 [arXiv:0810.3970] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    T. Faulkner and H. Liu, Condensed matter physics of a strongly coupled gauge theory with quarks: Some novel features of the phase diagram, arXiv:0812.4278 [INSPIRE].
  58. [58]
    M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor Superconductivity from Gauge/Gravity Duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    J. Erdmenger, V. Grass, P. Kerner and T.H. Ngo, Holographic Superfluidity in Imbalanced Mixtures, JHEP 08 (2011) 037 [arXiv:1103.4145] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  60. [60]
    N. Jokela and A.V. Ramallo, Universal properties of cold holographic matter, Phys. Rev. D 92 (2015) 026004 [arXiv:1503.04327] [INSPIRE].ADSMathSciNetGoogle Scholar
  61. [61]
    G. Itsios, N. Jokela and A.V. Ramallo, Collective excitations of massive flavor branes, Nucl. Phys. B 909 (2016) 677 [arXiv:1602.06106] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    A. Karch, M. Kulaxizi and A. Parnachev, Notes on Properties of Holographic Matter, JHEP 11 (2009) 017 [arXiv:0908.3493] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    M. Alford, M. Braby, M.W. Paris and S. Reddy, Hybrid stars that masquerade as neutron stars, Astrophys. J. 629 (2005) 969 [nucl-th/0411016] [INSPIRE].
  64. [64]
    L. McLerran and R.D. Pisarski, Phases of cold, dense quarks at large N c, Nucl. Phys. A 796 (2007) 83 [arXiv:0706.2191] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    I. Tews, T. Krüger, K. Hebeler and A. Schwenk, Neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory, Phys. Rev. Lett. 110 (2013) 032504 [arXiv:1206.0025] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    J.P. Pereira, C.V. Flores and G. Lugones, Phase transition effects on the dynamical stability of hybrid neutron stars, Astrophys. J. 860 (2018) 12 [arXiv:1706.09371] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J.R. Oppenheimer and G.M. Volkoff, On Massive neutron cores, Phys. Rev. 55 (1939) 374 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  68. [68]
    S. Chandrasekhar, Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity, Phys. Rev. Lett. 12 (1964) 114 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    S. Chandrasekhar, The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity, Astrophys. J. 140 (1964) 417 [Erratum ibid. 140 (1964) 1342] [INSPIRE].
  70. [70]
    M. Alford and S. Reddy, Compact stars with color superconducting quark matter, Phys. Rev. D 67 (2003) 074024 [nucl-th/0211046] [INSPIRE].
  71. [71]
    J.L. Zdunik and P. Haensel, Maximum mass of neutron stars and strange neutron-star cores, Astron. Astrophys. 551 (2013) A61 [arXiv:1211.1231] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    N. Glendenning, Compact Stars. Nuclear Physics, Particle Physics and General Relativity, Springer (1996).Google Scholar
  73. [73]
    C.S. Kochanek, Coalescing binary neutron stars, Astrophys. J. 398 (1992) 234 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    L. Bildsten and C. Cutler, Tidal interactions of inspiraling compact binaries, Astrophys. J. 400 (1992) 175 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    K.D. Kokkotas and G. Schaefer, Tidal and tidal resonant effects in coalescing binaries, Mon. Not. Roy. Astron. Soc. 275 (1995) 301 [gr-qc/9502034] [INSPIRE].
  76. [76]
    K. Taniguchi and M. Shibata, Gravitational radiation from corotating binary neutron stars of incompressible fluid in the first postNewtonian approximation of general relativity, Phys. Rev. D 58 (1998) 084012 [gr-qc/9807005] [INSPIRE].
  77. [77]
    J.A. Pons, E. Berti, L. Gualtieri, G. Miniutti and V. Ferrari, Gravitational signals emitted by a point mass orbiting a neutron star: Effects of stellar structure, Phys. Rev. D 65 (2002) 104021 [gr-qc/0111104] [INSPIRE].
  78. [78]
    E. Berti, J.A. Pons, G. Miniutti, L. Gualtieri and V. Ferrari, Are PostNewtonian templates faithful and effectual in detecting gravitational signals from neutron star binaries?, Phys. Rev. D 66 (2002) 064013 [gr-qc/0208011] [INSPIRE].
  79. [79]
    T. Mora and C.M. Will, A PostNewtonian diagnostic of quasiequilibrium binary configurations of compact objects, Phys. Rev. D 69 (2004) 104021 [Erratum ibid. D 71 (2005) 129901] [gr-qc/0312082] [INSPIRE].
  80. [80]
    D. Hansen, Dynamical evolution and leading order gravitational wave emission of Riemann-S binaries, Gen. Rel. Grav. 38 (2006) 1173 [gr-qc/0511033] [INSPIRE].
  81. [81]
    E.E. Flanagan and T. Hinderer, Constraining neutron star tidal Love numbers with gravitational wave detectors, Phys. Rev. D 77 (2008) 021502 [arXiv:0709.1915] [INSPIRE].ADSGoogle Scholar
  82. [82]
    B. Margalit and B.D. Metzger, Constraining the Maximum Mass of Neutron Stars From Multi-Messenger Observations of GW170817, Astrophys. J. 850 (2017) L19 [arXiv:1710.05938] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    A. Bauswein, O. Just, H.-T. Janka and N. Stergioulas, Neutron-star radius constraints from GW170817 and future detections, Astrophys. J. 850 (2017) L34 [arXiv:1710.06843] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    T. Gupta, B. Majumder, K. Yagi and N. Yunes, I-Love-Q Relations for Neutron Stars in dynamical Chern Simons Gravity, Class. Quant. Grav. 35 (2018) 025009 [arXiv:1710.07862] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  85. [85]
    E. Zhou, A. Tsokaros, L. Rezzolla, R. Xu and K. Uryū, Uniformly rotating, axisymmetric and triaxial quark stars in general relativity, Phys. Rev. D 97 (2018) 023013 [arXiv:1711.00198] [INSPIRE].ADSGoogle Scholar
  86. [86]
    L. Rezzolla, E.R. Most and L.R. Weih, Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars, Astrophys. J. 852 (2018) L25 [arXiv:1711.00314] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    P. Pósfay, G.G. Barnaföldi and A. Jakovác, The effect of quantum fluctuations in compact star observables, Publ. Astron. Soc. Austral. 35 (2018) 19 [arXiv:1710.05410] [INSPIRE].CrossRefGoogle Scholar
  88. [88]
    X.-Y. Lai, Y.-W. Yu, E.-P. Zhou, Y.-Y. Li and R.-X. Xu, Merging Strangeon Stars, Res. Astron. Astrophys. 18 (2018) 024 [arXiv:1710.04964] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    E. Annala, T. Gorda, A. Kurkela and A. Vuorinen, Gravitational-wave constraints on the neutron-star-matter Equation of State, Phys. Rev. Lett. 120 (2018) 172703 [arXiv:1711.02644] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    D. Radice, A. Perego, F. Zappa and S. Bernuzzi, GW170817: Joint Constraint on the Neutron Star Equation of State from Multimessenger Observations, Astrophys. J. 852 (2018) L29 [arXiv:1711.03647] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    A. Ayriyan, N.U. Bastian, D. Blaschke, H. Grigorian, K. Maslov and D.N. Voskresensky, Robustness of third family solutions for hybrid stars against mixed phase effects, Phys. Rev. C 97 (2018) 045802 [arXiv:1711.03926] [INSPIRE].ADSGoogle Scholar
  92. [92]
    E.-P. Zhou, X. Zhou and A. Li, Constraints on interquark interaction parameters with GW170817 in a binary strange star scenario, Phys. Rev. D 97 (2018) 083015 [arXiv:1711.04312] [INSPIRE].ADSGoogle Scholar
  93. [93]
    H. Yang, W.E. East and L. Lehner, Can we distinguish low mass black holes in neutron star binaries?, Astrophys. J. 856 (2018) 110 [arXiv:1710.05891] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    K. Yagi and N. Yunes, Approximate Universal Relations for Neutron Stars and Quark Stars, Phys. Rept. 681 (2017) 1 [arXiv:1608.02582] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  95. [95]
    T. Hinderer, Tidal Love numbers of neutron stars, Astrophys. J. 677 (2008) 1216 [arXiv:0711.2420] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    T. Hinderer, B.D. Lackey, R.N. Lang and J.S. Read, Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral, Phys. Rev. D 81 (2010) 123016 [arXiv:0911.3535] [INSPIRE].ADSGoogle Scholar
  97. [97]
    T. Binnington and E. Poisson, Relativistic theory of tidal Love numbers, Phys. Rev. D 80 (2009) 084018 [arXiv:0906.1366] [INSPIRE].ADSGoogle Scholar
  98. [98]
    T. Damour and A. Nagar, Relativistic tidal properties of neutron stars, Phys. Rev. D 80 (2009) 084035 [arXiv:0906.0096] [INSPIRE].ADSGoogle Scholar
  99. [99]
    P. Landry and E. Poisson, Relativistic theory of surficial Love numbers, Phys. Rev. D 89 (2014) 124011 [arXiv:1404.6798] [INSPIRE].ADSGoogle Scholar
  100. [100]
    K. Yagi and N. Yunes, I-Love-Q Relations in Neutron Stars and their Applications to Astrophysics, Gravitational Waves and Fundamental Physics, Phys. Rev. D 88 (2013) 023009 [arXiv:1303.1528] [INSPIRE].ADSGoogle Scholar
  101. [101]
    C.A. Raithel, F. Ozel and D. Psaltis, Model-Independent Inference of Neutron Star Radii from Moment of Inertia Measurements, Phys. Rev. C 93 (2016) 032801 [arXiv:1603.06594] [INSPIRE].ADSGoogle Scholar
  102. [102]
    A. Kurkela, E.S. Fraga, J. Schaffner-Bielich and A. Vuorinen, Constraining neutron star matter with Quantum Chromodynamics, Astrophys. J. 789 (2014) 127 [arXiv:1402.6618] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    A. Anabalon, T. Andrade, D. Astefanesei and R. Mann, Universal Formula for the Holographic Speed of Sound, Phys. Lett. B 781 (2018) 547 [arXiv:1702.00017] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  104. [104]
    S.L. Detweiler and J.R. Ipser, Variational principle and a stability-criterion for nonradial modes of pulsation of stellar models in general relativity, Astrophys. J. 185 (1973) 685 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  105. [105]
    A. Kovetz, Schwarzschilds Criterion for Convective Instability in General Relativity, Z. Astrophys. 66 (1967) 446.ADSGoogle Scholar
  106. [106]
    B.F. Schutz Jr., Taylor Instabilities in Relativistic Stars, Astrophys. J. 161 (1970) 1173.ADSCrossRefGoogle Scholar
  107. [107]
    S.L. Shapiro and S.A. Teukolsky, Black holes, white dwarfs, and neutron stars: The physics of compact objects, Wiley-VCH (1983).Google Scholar
  108. [108]
    G. Chanmugam, Radial oscillations of zero-temperature white dwarfs and neutron stars below nuclear densities, Astrophys. J. 217 (1977) 799.ADSCrossRefGoogle Scholar
  109. [109]
    J.B. Hartle and K.S. Thorne, Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars, Astrophys. J. 153 (1968) 807 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics and Helsinki Institute of PhysicsUniversity of HelsinkiHelsinkiFinland
  2. 2.Institut für Theoretische PhysikTechnische Universität WienViennaAustria
  3. 3.Department of PhysicsUniversidad de OviedoOviedoSpain
  4. 4.Institute for Theoretical Physics and AstrophysicsUniversity of WürzburgWürzburgGermany

Personalised recommendations