Advertisement

Journal of High Energy Physics

, 2018:77 | Cite as

Tr(F3) supersymmetric form factors and maximal transcendentality. Part II. 0 <\( \mathcal{N} \)< 4 super Yang-Mills

  • Andreas Brandhuber
  • Martyna Kostacińska
  • Brenda PenanteEmail author
  • Gabriele Travaglini
Open Access
Regular Article - Theoretical Physics
  • 43 Downloads

Abstract

The study of form factors has many phenomenologically interesting applications, one of which is Higgs plus gluon amplitudes in QCD. Through effective field theory techniques these are related to form factors of various operators of increasing classical dimension. In this paper we extend our analysis of the first finite top-mass correction, arising from the operator Tr(F3), from \( \mathcal{N} \) = 4 super Yang-Mills to theories with \( \mathcal{N} \)< 4, for the case of three gluons and up to two loops. We confirm our earlier result that the maximally transcendental part of the associated Catani remainder is universal and equal to that of the form factor of a protected trilinear operator in the maximally supersymmetric theory. The terms with lower transcendentality deviate from the \( \mathcal{N} \) = 4 answer by a surprisingly small set of terms involving for example ζ2, ζ3 and simple powers of logarithms, for which we provide explicit expressions.

Keywords

Effective Field Theories Scattering Amplitudes Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Brandhuber, M. Kostacińska, B. Penante and G. Travaglini, Higgs amplitudes from N = 4 super Yang-Mills theory, Phys. Rev. Lett. 119 (2017) 161601 [arXiv:1707.09897] [INSPIRE].CrossRefGoogle Scholar
  2. [2]
    A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Tr(F 3) supersymmetric form factors and maximal transcendentality. Part I. \( \mathcal{N} \) = 4 super Yang-Mills, JHEP 12 (2018) 076[arXiv:1804.05703] [INSPIRE].
  3. [3]
    D. Neill, Two-loop matching onto dimension eight operators in the Higgs-glue sector, arXiv:0908.1573 [INSPIRE].
  4. [4]
    S. Dawson, I.M. Lewis and M. Zeng, Effective field theory for Higgs boson plus jet production, Phys. Rev. D 90 (2014) 093007 [arXiv:1409.6299] [INSPIRE].ADSGoogle Scholar
  5. [5]
    J.A. Gracey, Classification and one loop renormalization of dimension-six and dimension-eight operators in quantum gluodynamics, Nucl. Phys. B 634 (2002) 192 [Erratum ibid. B 696 (2004) 295] [hep-ph/0204266] [INSPIRE].
  6. [6]
    A. Brandhuber, G. Travaglini and G. Yang, Analytic two-loop form factors in N = 4 SYM, JHEP 05 (2012) 082 [arXiv:1201.4170] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-loop QCD corrections to the helicity amplitudes for H → 3 partons, JHEP 02 (2012) 056 [arXiv:1112.3554] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    B. Penante, B. Spence, G. Travaglini and C. Wen, On super form factors of half-BPS operators in N = 4 super Yang-Mills, JHEP 04 (2014) 083 [arXiv:1402.1300] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Brandhuber, B. Penante, G. Travaglini and C. Wen, The last of the simple remainders, JHEP 08 (2014) 100 [arXiv:1406.1443] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Brandhuber, M. Kostacińska, B. Penante, G. Travaglini and D. Young, The SU(2|3) dynamic two-loop form factors, JHEP 08 (2016) 134 [arXiv:1606.08682] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    F. Loebbert, D. Nandan, C. Sieg, M. Wilhelm and G. Yang, On-shell methods for the two-loop dilatation operator and finite remainders, JHEP 10 (2015) 012 [arXiv:1504.06323] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    N. Beisert, The SU(2|3) dynamic spin chain, Nucl. Phys. B 682 (2004) 487 [hep-th/0310252] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    D. Chicherin and E. Sokatchev, Composite operators and form factors in N = 4 SYM, J. Phys. A 50 (2017) 275402 [arXiv:1605.01386] [INSPIRE].ADSzbMATHGoogle Scholar
  14. [14]
    H. Elvang, Y.-T. Huang and C. Peng, On-shell superamplitudes in N < 4 SYM, JHEP 09 (2011) 031 [arXiv:1102.4843] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Z. Bern, M. Czakon, D.A. Kosower, R. Roiban and V.A. Smirnov, Two-loop iteration of five-point N = 4 super-Yang-Mills amplitudes, Phys. Rev. Lett. 97 (2006) 181601 [hep-th/0604074] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].ADSGoogle Scholar
  18. [18]
    D. Neill, Analytic virtual corrections for Higgs transverse momentum spectrum at O(α s2/m t3) via unitarity methods, arXiv:0911.2707 [INSPIRE].
  19. [19]
    Q. Jin and G. Yang, Analytic two-loop Higgs amplitudes in effective field theory and the maximal transcendentality principle, Phys. Rev. Lett. 121 (2018) 101603 [arXiv:1804.04653] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Brandhuber, O. Gurdogan, R. Mooney, G. Travaglini and G. Yang, Harmony of super form factors, JHEP 10 (2011) 046 [arXiv:1107.5067] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
  22. [22]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
  23. [23]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett. 70 (1993) 2677 [hep-ph/9302280] [INSPIRE].
  24. [24]
    J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, Non-supersymmetric loop amplitudes and MHV vertices, Nucl. Phys. B 712 (2005) 59 [hep-th/0412108] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    D.J. Gross and F. Wilczek, Asymptotically free gauge theoriesI, Phys. Rev. D 8 (1973) 3633 [INSPIRE].ADSGoogle Scholar
  27. [27]
    W.T. Giele and E.W.N. Glover, Higher order corrections to jet cross-sections in e + e annihilation, Phys. Rev. D 46 (1992) 1980 [INSPIRE].ADSGoogle Scholar
  28. [28]
    Z. Kunszt, A. Signer and Z. Trócsányi, Singular terms of helicity amplitudes at one loop in QCD and the soft limit of the cross-sections of multiparton processes, Nucl. Phys. B 420 (1994) 550 [hep-ph/9401294] [INSPIRE].
  29. [29]
    S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
  30. [30]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  31. [31]
    Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop ggg splitting amplitudes in QCD, JHEP 08 (2004) 012 [hep-ph/0404293] [INSPIRE].
  32. [32]
    G. Ferretti, R. Heise and K. Zarembo, New integrable structures in large-N QCD, Phys. Rev. D 70 (2004) 074024 [hep-th/0404187] [INSPIRE].ADSGoogle Scholar
  33. [33]
    D. Anselmi, M.T. Grisaru and A. Johansen, A critical behavior of anomalous currents, electric-magnetic universality and CFT in four-dimensions, Nucl. Phys. B 491 (1997) 221 [hep-th/9601023] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, On the logarithmic behavior in N = 4 SYM theory, JHEP 08 (1999) 020 [hep-th/9906188] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  36. [36]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
  37. [37]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
  38. [38]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ → 3 jets: the planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].
  39. [39]
    H. Johansson, G. Kälin and G. Mogull, Two-loop supersymmetric QCD and half-maximal supergravity amplitudes, JHEP 09 (2017) 019 [arXiv:1706.09381] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    G. Kälin, G. Mogull and A. Ochirov, Two-loop N = 2 SQCD amplitudes with external matter from iterated cuts, arXiv:1811.09604 [INSPIRE].
  41. [41]
    Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for gluon-gluon scattering in QCD and supersymmetric Yang-Mills theory, JHEP 03 (2002) 018 [hep-ph/0201161] [INSPIRE].
  42. [42]
    Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for quark gluon scattering in QCD and gluino gluon scattering in supersymmetric Yang-Mills theory, JHEP 06 (2003) 028 [Erratum ibid. 04 (2014) 112] [hep-ph/0304168] [INSPIRE].
  43. [43]
    M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, Anomalous dimensions in N = 4 SYM theory at order g 4, Nucl. Phys. B 584 (2000) 216 [hep-th/0003203] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Form factors in N = 4 supersymmetric Yang-Mills and Higgs plus gluon amplitudes, talk at the XXIII IFT Christmas workshop, https://workshops.ift.uam-csic.es/Xmas17/program, Madrid, Spain, (2017).
  45. [45]
    A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Amplitudes and form factors from N = 4 super Yang-Mills to QCD, talk at the 2018 Bethe forum, https://indico.desy.de/indico/event/18613/, Bonn, Germany, (2018).

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary University of LondonLondonU.K.
  2. 2.CERN Theory DivisionGeneva 23Switzerland

Personalised recommendations