Advertisement

Journal of High Energy Physics

, 2018:76 | Cite as

Tr(F3) supersymmetric form factors and maximal transcendentality. Part I. \( \mathcal{N} \) = 4 super Yang-Mills

  • Andreas Brandhuber
  • Martyna Kostacińska
  • Brenda PenanteEmail author
  • Gabriele Travaglini
Open Access
Regular Article - Theoretical Physics
  • 24 Downloads

Abstract

In the large top-mass limit, Higgs plus multi-gluon amplitudes in QCD can be computed using an effective field theory. This approach turns the computation of such amplitudes into that of form factors of operators of increasing classical dimension. In this paper we focus on the first finite top-mass correction, arising from the operator Tr(F3), up to two loops and three gluons. Setting up the calculation in the maximally supersymmetric theory requires identification of an appropriate supersymmetric completion of Tr(F3), which we recognise as a descendant of the Konishi operator. We provide detailed computations for both this operator and the component operator Tr(F3), preparing the ground for the calculation in \( \mathcal{N} \)< 4, to be detailed in a companion paper. Our results for both operators are expressed in terms of a few universal functions of transcendental degree four and below, some of which have appeared in other contexts, hinting at universality of such quantities. An important feature of the result is a delicate cancellation of unphysical poles appearing in soft/collinear limits of the remainders which links terms of different transcendentality. Our calculation provides another example of the principle of maximal transcendentality for observables with non-trivial kinematic dependence.

Keywords

Effective Field Theories Scattering Amplitudes Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Wilczek, Decays of heavy vector mesons into Higgs particles, Phys. Rev. Lett. 39 (1977) 1304 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].
  3. [3]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D. Neill, Two-loop matching onto dimension eight operators in the Higgs-glue sector, arXiv:0908.1573 [INSPIRE].
  6. [6]
    D. Neill, Analytic virtual corrections for Higgs transverse momentum spectrum at O(α s2/m t3) via unitarity methods, arXiv:0911.2707 [INSPIRE].
  7. [7]
    R.V. Harlander and T. Neumann, Probing the nature of the Higgs-gluon coupling, Phys. Rev. D 88 (2013) 074015 [arXiv:1308.2225] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Dawson, I.M. Lewis and M. Zeng, Effective field theory for Higgs boson plus jet production, Phys. Rev. D 90 (2014) 093007 [arXiv:1409.6299] [INSPIRE].ADSGoogle Scholar
  9. [9]
    J.A. Gracey, Classification and one loop renormalization of dimension-six and dimension-eight operators in quantum gluodynamics, Nucl. Phys. B 634 (2002) 192 [Erratum ibid. B 696 (2004) 295] [hep-ph/0204266] [INSPIRE].
  10. [10]
    P. Benincasa and E. Conde, Exploring the S-matrix of massless particles, Phys. Rev. D 86 (2012) 025007 [arXiv:1108.3078] [INSPIRE].ADSGoogle Scholar
  11. [11]
    L.J. Dixon and Y. Shadmi, Testing gluon selfinteractions in three jet events at hadron colliders, Nucl. Phys. B 423 (1994) 3 [Erratum ibid. B 452 (1995) 724] [hep-ph/9312363] [INSPIRE].
  12. [12]
    L.J. Dixon, E.W.N. Glover and V.V. Khoze, MHV rules for Higgs plus multi-gluon amplitudes, JHEP 12 (2004) 015 [hep-th/0411092] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T. Cohen, H. Elvang and M. Kiermaier, On-shell constructibility of tree amplitudes in general field theories, JHEP 04 (2011) 053 [arXiv:1010.0257] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    J. Broedel and L.J. Dixon, Color-kinematics duality and double-copy construction for amplitudes from higher-dimension operators, JHEP 10 (2012) 091 [arXiv:1208.0876] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, The super-correlator/super-amplitude duality: part I, Nucl. Phys. B 869 (2013) 329 [arXiv:1103.3714] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Brandhuber, O. Gurdogan, R. Mooney, G. Travaglini and G. Yang, Harmony of super form factors, JHEP 10 (2011) 046 [arXiv:1107.5067] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    A. Brandhuber, G. Travaglini and G. Yang, Analytic two-loop form factors in N = 4 SYM, JHEP 05 (2012) 082 [arXiv:1201.4170] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    A. Brandhuber, B. Spence, G. Travaglini and G. Yang, Form factors in N = 4 super Yang-Mills and periodic Wilson loops, JHEP 01 (2011) 134 [arXiv:1011.1899] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-loop QCD corrections to the helicity amplitudes for H → 3 partons, JHEP 02 (2012) 056 [arXiv:1112.3554] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    B. Penante, B. Spence, G. Travaglini and C. Wen, On super form factors of half-BPS operators in N = 4 super Yang-Mills, JHEP 04 (2014) 083 [arXiv:1402.1300] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Brandhuber, B. Penante, G. Travaglini and C. Wen, The last of the simple remainders, JHEP 08 (2014) 100 [arXiv:1406.1443] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, All tree-level MHV form factors in N = 4 SYM from twistor space, JHEP 06 (2016) 162 [arXiv:1604.00012] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    D. Chicherin and E. Sokatchev, Composite operators and form factors in N = 4 SYM, J. Phys. A 50 (2017) 275402 [arXiv:1605.01386] [INSPIRE].ADSzbMATHGoogle Scholar
  25. [25]
    A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Tr(F 3) supersymmetric form factors and maximal transcendentality. Part II. 0 < \( \mathcal{N} \) < 4 super Yang-Mills, JHEP 12 (2018) 077[arXiv:1804.05828] [INSPIRE].
  26. [26]
    A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Higgs amplitudes from N = 4 super Yang-Mills theory, Phys. Rev. Lett. 119 (2017) 161601 [arXiv:1707.09897] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL equations in the N = 4 supersymmetric gauge theory, Nucl. Phys. B 661 (2003) 19 [Erratum ibid. B 685 (2004) 405] [hep-ph/0208220] [INSPIRE].
  28. [28]
    A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett. B 595 (2004) 521 [Erratum ibid. B 632 (2006) 754] [hep-th/0404092] [INSPIRE].
  29. [29]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: the nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
  30. [30]
    A. Vogt, S. Moch and J.A.M. Vermaseren, The three-loop splitting functions in QCD: the singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].
  31. [31]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
  32. [32]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett. 70 (1993) 2677 [hep-ph/9302280] [INSPIRE].
  33. [33]
    J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, Non-supersymmetric loop amplitudes and MHV vertices, Nucl. Phys. B 712 (2005) 59 [hep-th/0412108] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    P. Banerjee, P.K. Dhani, M. Mahakhud, V. Ravindran and S. Seth, Finite remainders of the Konishi at two loops in N = 4 SYM, JHEP 05 (2017) 085 [arXiv:1612.00885] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    F. Loebbert, D. Nandan, C. Sieg, M. Wilhelm and G. Yang, On-shell methods for the two-loop dilatation operator and finite remainders, JHEP 10 (2015) 012 [arXiv:1504.06323] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    A. Brandhuber, M. Kostacinska, B. Penante, G. Travaglini and D. Young, The SU(2|3) dynamic two-loop form factors, JHEP 08 (2016) 134 [arXiv:1606.08682] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    F. Loebbert, C. Sieg, M. Wilhelm and G. Yang, Two-loop SL(2) form factors and maximal transcendentality, JHEP 12 (2016) 090 [arXiv:1610.06567] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, Soft-virtual corrections to Higgs production at N 3 LO, Phys. Rev. D 91 (2015) 036008 [arXiv:1412.2771] [INSPIRE].ADSGoogle Scholar
  39. [39]
    Y. Li and H.X. Zhu, Bootstrapping rapidity anomalous dimensions for transverse-momentum resummation, Phys. Rev. Lett. 118 (2017) 022004 [arXiv:1604.01404] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    L.J. Dixon, The principle of maximal transcendentality and the four-loop collinear anomalous dimension, JHEP 01 (2018) 075 [arXiv:1712.07274] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    N. Beisert, The SU(2|3) dynamic spin chain, Nucl. Phys. B 682 (2004) 487 [hep-th/0310252] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    A. Brandhuber, M. Kostacińska, B. Penante and G. Travaglini, Form factors in N = 4 supersymmetric Yang-Mills and Higgs plus gluon amplitudes, talk at the XXIII IFT Christmas workshop, https://workshops.ift.uam-csic.es/Xmas17/program, Madrid, Spain, (2017).
  43. [43]
    A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Amplitudes and form factors from N = 4 super Yang-Mills to QCD, talk at the 2018 Bethe forum, https://indico.desy.de/indico/event/18613/, Bonn, Germany, (2018).
  44. [44]
    C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    Z. Bern, M. Czakon, D.A. Kosower, R. Roiban and V.A. Smirnov, Two-loop iteration of five-point N = 4 super-Yang-Mills amplitudes, Phys. Rev. Lett. 97 (2006) 181601 [hep-th/0604074] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].ADSGoogle Scholar
  47. [47]
    D. Nandan, C. Sieg, M. Wilhelm and G. Yang, Cutting through form factors and cross sections of non-protected operators in N = 4 SYM, JHEP 06 (2015) 156 [arXiv:1410.8485] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    V.P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett. B 214 (1988) 215 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  50. [50]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
  51. [51]
    M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP 09 (2004) 006 [hep-th/0403047] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
  54. [54]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ → 3 jets: the planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].
  55. [55]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].ADSGoogle Scholar
  58. [58]
    S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
  59. [59]
    J. Fleischer, A.V. Kotikov and O.L. Veretin, Analytic two loop results for selfenergy type and vertex type diagrams with one nonzero mass, Nucl. Phys. B 547 (1999) 343 [hep-ph/9808242] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary University of LondonLondonU.K.
  2. 2.CERN Theory DivisionGeneva 23Switzerland

Personalised recommendations