Advertisement

Journal of High Energy Physics

, 2018:74 | Cite as

Soft photon hair on Schwarzschild horizon from a Wilson line perspective

  • Sangmin ChoiEmail author
  • Ratindranath Akhoury
Open Access
Regular Article - Theoretical Physics

Abstract

We develop a unified framework for the construction of soft dressings at boundaries of spacetime, such as the null infinity of Minkowski spacetime and the horizon of a Schwarzschild black hole. The construction is based on an old proposal of Mandelstam for quantizing QED and considers matter fields dressed by Wilson lines. Along time-like paths, the Wilson lines puncturing the boundary are the analogs of flat space Faddeev-Kulish dressings. We focus on the Schwarzschild black hole where our framework provides a quantum-field-theoretical perspective of the Hawking-Perry-Strominger viewpoint that black holes carry soft hair, through a study of the Wilson line dressings, localized on the horizon.

Keywords

Black Holes Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  2. [2]
    S.W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].
  3. [3]
    S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].CrossRefzbMATHGoogle Scholar
  5. [5]
    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New Symmetries of Massless QED, JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    A. Strominger and A. Zhiboedov, Gravitational Memory, BMS Supertranslations and Soft Theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Higher-Dimensional Supertranslations and Weinberg’s Soft Graviton Theorem, arXiv:1502.07644 [INSPIRE].
  9. [9]
    D. Kapec, M. Pate and A. Strominger, New Symmetries of QED, Adv. Theor. Math. Phys. 21 (2017) 1769 [arXiv:1506.02906] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].
  11. [11]
    S. Mandelstam, Quantum electrodynamics without potentials, Annals Phys. 19 (1962) 1 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    P.A.M. Dirac, Gauge-invariant formulation of quantum electrodynamics, Can. J. Phys. 33 (1955) 650.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    P.P. Kulish and L.D. Faddeev, Asymptotic conditions and infrared divergences in quantum electrodynamics, Theor. Math. Phys. 4 (1970) 745 [INSPIRE].CrossRefzbMATHGoogle Scholar
  14. [14]
    R. Jakob and N.G. Stefanis, Path dependent phase factors and the infrared problem in QED, Annals Phys. 210 (1991) 112 [INSPIRE].CrossRefzbMATHGoogle Scholar
  15. [15]
    D. Zwanziger, Field renormalization and reduction formula in quantum electrodynamics, Phys. Rev. Lett. 30 (1973) 934 [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    D. Kapec, M. Perry, A.-M. Raclariu and A. Strominger, Infrared Divergences in QED, Revisited, Phys. Rev. D 96 (2017) 085002 [arXiv:1705.04311] [INSPIRE].
  17. [17]
    A. Blommaert, T.G. Mertens, H. Verschelde and V.I. Zakharov, Edge State Quantization: Vector Fields in Rindler, JHEP 08 (2018) 196 [arXiv:1801.09910] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A. Blommaert, T.G. Mertens and H. Verschelde, Edge dynamics from the path integral — Maxwell and Yang-Mills, JHEP 11 (2018) 080 [arXiv:1804.07585] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    F. Lenz, K. Ohta and K. Yazaki, Canonical quantization of gauge fields in static space-times with applications to Rindler spaces, Phys. Rev. D 78 (2008) 065026 [arXiv:0803.2001] [INSPIRE].
  20. [20]
    L. Bieri and D. Garfinkle, An electromagnetic analogue of gravitational wave memory, Class. Quant. Grav. 30 (2013) 195009 [arXiv:1307.5098] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J. Ware, R. Saotome and R. Akhoury, Construction of an asymptotic S matrix for perturbative quantum gravity, JHEP 10 (2013) 159 [arXiv:1308.6285] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    S. Choi and R. Akhoury, BMS Supertranslation Symmetry Implies Faddeev-Kulish Amplitudes, JHEP 02 (2018) 171 [arXiv:1712.04551] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    B. Gabai and A. Sever, Large gauge symmetries and asymptotic states in QED, JHEP 12 (2016) 095 [arXiv:1607.08599] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    S. Choi, U. Kol and R. Akhoury, Asymptotic Dynamics in Perturbative Quantum Gravity and BMS Supertranslations, JHEP 01 (2018) 142 [arXiv:1708.05717] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  25. [25]
    S.W. Hawking, M.J. Perry and A. Strominger, Superrotation Charge and Supertranslation Hair on Black Holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP 09 (2016) 102 [arXiv:1601.04744] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S. Mandelstam, Quantization of the gravitational field, Annals Phys. 19 (1962) 25 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    S. Mandelstam, Feynman rules for the gravitational field from the coordinate independent field theoretic formalism, Phys. Rev. 175 (1968) 1604 [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    J. Wilson-Gerow, C. DeLisle and P. Stamp, A functional approach to soft graviton scattering and BMS charges, Class. Quant. Grav. 35 (2018) 164001 [arXiv:1808.01372] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    R. Javadinezhad, U. Kol and M. Porrati, Comments on Lorentz Transformations, Dressed Asymptotic States and Hawking Radiation, arXiv:1808.02987 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Leinweber Center for Theoretical Physics, Randall Laboratory of Physics, Department of PhysicsUniversity of MichiganAnn ArborU.S.A.

Personalised recommendations