Journal of High Energy Physics

, 2018:74 | Cite as

Soft photon hair on Schwarzschild horizon from a Wilson line perspective

  • Sangmin ChoiEmail author
  • Ratindranath Akhoury
Open Access
Regular Article - Theoretical Physics


We develop a unified framework for the construction of soft dressings at boundaries of spacetime, such as the null infinity of Minkowski spacetime and the horizon of a Schwarzschild black hole. The construction is based on an old proposal of Mandelstam for quantizing QED and considers matter fields dressed by Wilson lines. Along time-like paths, the Wilson lines puncturing the boundary are the analogs of flat space Faddeev-Kulish dressings. We focus on the Schwarzschild black hole where our framework provides a quantum-field-theoretical perspective of the Hawking-Perry-Strominger viewpoint that black holes carry soft hair, through a study of the Wilson line dressings, localized on the horizon.


Black Holes Gauge Symmetry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  2. [2]
    S.W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].
  3. [3]
    S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].CrossRefzbMATHGoogle Scholar
  5. [5]
    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New Symmetries of Massless QED, JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    A. Strominger and A. Zhiboedov, Gravitational Memory, BMS Supertranslations and Soft Theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Higher-Dimensional Supertranslations and Weinberg’s Soft Graviton Theorem, arXiv:1502.07644 [INSPIRE].
  9. [9]
    D. Kapec, M. Pate and A. Strominger, New Symmetries of QED, Adv. Theor. Math. Phys. 21 (2017) 1769 [arXiv:1506.02906] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].
  11. [11]
    S. Mandelstam, Quantum electrodynamics without potentials, Annals Phys. 19 (1962) 1 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    P.A.M. Dirac, Gauge-invariant formulation of quantum electrodynamics, Can. J. Phys. 33 (1955) 650.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    P.P. Kulish and L.D. Faddeev, Asymptotic conditions and infrared divergences in quantum electrodynamics, Theor. Math. Phys. 4 (1970) 745 [INSPIRE].CrossRefzbMATHGoogle Scholar
  14. [14]
    R. Jakob and N.G. Stefanis, Path dependent phase factors and the infrared problem in QED, Annals Phys. 210 (1991) 112 [INSPIRE].CrossRefzbMATHGoogle Scholar
  15. [15]
    D. Zwanziger, Field renormalization and reduction formula in quantum electrodynamics, Phys. Rev. Lett. 30 (1973) 934 [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    D. Kapec, M. Perry, A.-M. Raclariu and A. Strominger, Infrared Divergences in QED, Revisited, Phys. Rev. D 96 (2017) 085002 [arXiv:1705.04311] [INSPIRE].
  17. [17]
    A. Blommaert, T.G. Mertens, H. Verschelde and V.I. Zakharov, Edge State Quantization: Vector Fields in Rindler, JHEP 08 (2018) 196 [arXiv:1801.09910] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A. Blommaert, T.G. Mertens and H. Verschelde, Edge dynamics from the path integral — Maxwell and Yang-Mills, JHEP 11 (2018) 080 [arXiv:1804.07585] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    F. Lenz, K. Ohta and K. Yazaki, Canonical quantization of gauge fields in static space-times with applications to Rindler spaces, Phys. Rev. D 78 (2008) 065026 [arXiv:0803.2001] [INSPIRE].
  20. [20]
    L. Bieri and D. Garfinkle, An electromagnetic analogue of gravitational wave memory, Class. Quant. Grav. 30 (2013) 195009 [arXiv:1307.5098] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J. Ware, R. Saotome and R. Akhoury, Construction of an asymptotic S matrix for perturbative quantum gravity, JHEP 10 (2013) 159 [arXiv:1308.6285] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    S. Choi and R. Akhoury, BMS Supertranslation Symmetry Implies Faddeev-Kulish Amplitudes, JHEP 02 (2018) 171 [arXiv:1712.04551] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    B. Gabai and A. Sever, Large gauge symmetries and asymptotic states in QED, JHEP 12 (2016) 095 [arXiv:1607.08599] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    S. Choi, U. Kol and R. Akhoury, Asymptotic Dynamics in Perturbative Quantum Gravity and BMS Supertranslations, JHEP 01 (2018) 142 [arXiv:1708.05717] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  25. [25]
    S.W. Hawking, M.J. Perry and A. Strominger, Superrotation Charge and Supertranslation Hair on Black Holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP 09 (2016) 102 [arXiv:1601.04744] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S. Mandelstam, Quantization of the gravitational field, Annals Phys. 19 (1962) 25 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    S. Mandelstam, Feynman rules for the gravitational field from the coordinate independent field theoretic formalism, Phys. Rev. 175 (1968) 1604 [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    J. Wilson-Gerow, C. DeLisle and P. Stamp, A functional approach to soft graviton scattering and BMS charges, Class. Quant. Grav. 35 (2018) 164001 [arXiv:1808.01372] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    R. Javadinezhad, U. Kol and M. Porrati, Comments on Lorentz Transformations, Dressed Asymptotic States and Hawking Radiation, arXiv:1808.02987 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Leinweber Center for Theoretical Physics, Randall Laboratory of Physics, Department of PhysicsUniversity of MichiganAnn ArborU.S.A.

Personalised recommendations