Advertisement

Journal of High Energy Physics

, 2018:65 | Cite as

\( \mathcal{N}=\left(0,\ 2\right) \) SYK, chaos and higher-spins

  • Cheng PengEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We study a 2-dimensional SYK-like model with \( \mathcal{N}=\left(0,\ 2\right) \) supersymmetry. The model describes N chiral supermultiplets and M Fermi supermultiplets with a (q + 1)- field interaction. We solve the model analytically and numerically in the N ≫ 1, M ≫ 1 limit with \( \mu \equiv \frac{M}{N} \) being a free parameter. Two distinct higher-spin symmetries emerge when the μ parameter approaches the two ends of its range. This is verified by the appearance of conserved higher-spin operators and the vanishing of chaotic behaviors in the two limits. Therefore this model provides a manifest realization of the widely believed connection between SYK-like models and higher-spin theories. In addition, as the parameter μ varies we find the largest Lyapunov exponent of this model to be slightly larger than that in models with non-chiral supersymmetry.

Keywords

1/N Expansion Extended Supersymmetry Higher Spin Symmetry Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  2. [2]
    O. Parcollet, A. Georges, G. Kotliar and A. Sengupta, Overscreened multichannel SU(N) Kondo model: Large-N solution and conformal field theory, Phys. Rev. B 58 (1998) 3794 [cond-mat/9711192] [INSPIRE].
  3. [3]
    O. Parcollet and A. Georges, Phys. Rev. B 59 (1999) 5341 [cond-mat/9806119].
  4. [4]
    A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk at KITP Theory Seminar, 12 February 2015.Google Scholar
  5. [5]
    A. Kitaev, A simple model of quantum holography, talk at KITP Entangled15, 7 April 2015.Google Scholar
  6. [6]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
  7. [7]
    A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 05 (2018) 183 [arXiv:1711.08467] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A. Jevicki and K. Suzuki, Bi-Local Holography in the SYK Model: Perturbations, JHEP 11 (2016) 046 [arXiv:1608.07567] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    D.J. Gross and V. Rosenhaus, The Bulk Dual of SYK: Cubic Couplings, JHEP 05 (2017) 092 [arXiv:1702.08016] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    D.J. Gross and V. Rosenhaus, All point correlation functions in SYK, JHEP 12 (2017) 148 [arXiv:1710.08113] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].
  13. [13]
    D. Stanford and E. Witten, Fermionic Localization of the Schwarzian Theory, JHEP 10 (2017) 008 [arXiv:1703.04612] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the Conformal Bootstrap, JHEP 08 (2017) 136 [arXiv:1705.08408] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Strominger, AdS2 quantum gravity and string theory, JHEP 01 (1999) 007 [hep-th/9809027] [INSPIRE].
  16. [16]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].
  18. [18]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  19. [19]
    J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].
  20. [20]
    M. Cvetič and I. Papadimitriou, AdS 2 holographic dictionary, JHEP 12 (2016) 008 [Erratum ibid. 01 (2017) 120] [arXiv:1608.07018] [INSPIRE].
  21. [21]
    D. Grumiller, R. McNees, J. Salzer, C. Valcárcel and D. Vassilevich, Menagerie of AdS 2 boundary conditions, JHEP 10 (2017) 203 [arXiv:1708.08471] [INSPIRE].
  22. [22]
    J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
  23. [23]
    D. Bagrets, A. Altland and A. Kamenev, Power-law out of time order correlation functions in the SYK model, Nucl. Phys. B 921 (2017) 727 [arXiv:1702.08902] [INSPIRE].
  24. [24]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    K. Jensen, Chaos in AdS 2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
  28. [28]
    S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals, Phys. Rev. X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].
  30. [30]
    W. Fu and S. Sachdev, Numerical study of fermion and boson models with infinite-range random interactions, Phys. Rev. B 94 (2016) 035135 [arXiv:1603.05246] [INSPIRE].
  31. [31]
    A. Jevicki, K. Suzuki and J. Yoon, Bi-Local Holography in the SYK Model, JHEP 07 (2016) 007 [arXiv:1603.06246] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    L. García- Álvarez, I.L. Egusquiza, L. Lamata, A. del Campo, J. Sonner and E. Solano, Digital Quantum Simulation of Minimal AdS/CFT, Phys. Rev. Lett. 119 (2017) 040501 [arXiv:1607.08560] [INSPIRE].
  33. [33]
    A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].
  34. [34]
    J.S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [Erratum ibid. 09 (2018) 002] [arXiv:1611.04650] [INSPIRE].
  35. [35]
    A.M. García-García and J.J.M. Verbaarschot, Analytical Spectral Density of the Sachdev-Ye-Kitaev Model at finite N, Phys. Rev. D 96 (2017) 066012 [arXiv:1701.06593] [INSPIRE].
  36. [36]
    I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2 gravity, arXiv:1707.02325 [INSPIRE].
  37. [37]
    J. Sonner and M. Vielma, Eigenstate thermalization in the Sachdev-Ye-Kitaev model, JHEP 11 (2017) 149 [arXiv:1707.08013] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    A.M. García-García, Y. Jia and J.J.M. Verbaarschot, Exact moments of the Sachdev-Ye-Kitaev model up to order 1/N 2, JHEP 04 (2018) 146 [arXiv:1801.02696] [INSPIRE].
  39. [39]
    C. Peng, Vector models and generalized SYK models, JHEP 05 (2017) 129 [arXiv:1704.04223] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    S. Banerjee and E. Altman, Solvable model for a dynamical quantum phase transition from fast to slow scrambling, Phys. Rev. B 95 (2017) 134302 [arXiv:1610.04619] [INSPIRE].
  41. [41]
    Z. Bi, C.-M. Jian, Y.-Z. You, K.A. Pawlak and C. Xu, Instability of the non-Fermi liquid state of the Sachdev-Ye-Kitaev Model, Phys. Rev. B 95 (2017) 205105 [arXiv:1701.07081] [INSPIRE].
  42. [42]
    C.-M. Jian, Z. Bi and C. Xu, A model for continuous thermal Metal to Insulator Transition, Phys. Rev. B 96 (2017) 115122 [arXiv:1703.07793] [INSPIRE].
  43. [43]
    X.-Y. Song, C.-M. Jian and L. Balents, A strongly correlated metal built from Sachdev-Ye-Kitaev modelsStrongly Correlated Metal Built from Sachdev-Ye-Kitaev Models, Phys. Rev. Lett. 119 (2017) 216601 [arXiv:1705.00117] [INSPIRE].
  44. [44]
    Z. Luo et al., Observing Fermion Pair Instability of the Sachdev-Ye-Kitaev Model on a Quantum Spin Simulator, arXiv:1712.06458 [INSPIRE].
  45. [45]
    T. Nosaka, D. Rosa and J. Yoon, The Thouless time for mass-deformed SYK, JHEP 09 (2018) 041 [arXiv:1804.09934] [INSPIRE].CrossRefzbMATHGoogle Scholar
  46. [46]
    S. Mondal, Super-maximal chaos and instability, arXiv:1801.09669 [INSPIRE].
  47. [47]
    D.J. Gross and V. Rosenhaus, A line of CFTs: from generalized free fields to SYK, JHEP 07 (2017) 086 [arXiv:1706.07015] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    M. Taylor, Generalized conformal structure, dilaton gravity and SYK, JHEP 01 (2018) 010 [arXiv:1706.07812] [INSPIRE].zbMATHGoogle Scholar
  49. [49]
    S.R. Das, A. Ghosh, A. Jevicki and K. Suzuki, Three Dimensional View of Arbitrary q SYK models, JHEP 02 (2018) 162 [arXiv:1711.09839] [INSPIRE].
  50. [50]
    S.R. Das, A. Ghosh, A. Jevicki and K. Suzuki, Space-Time in the SYK Model, JHEP 07 (2018) 184 [arXiv:1712.02725] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    J. Maldacena, D. Stanford and Z. Yang, Fortsch. Phys. 65 (2017) 1700034.Google Scholar
  52. [52]
    K. Murata, Fast scrambling in holographic Einstein-Podolsky-Rosen pair, JHEP 11 (2017) 049 [arXiv:1708.09493] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    J. de Boer, E. Llabrés, J.F. Pedraza and D. Vegh, Chaotic strings in AdS/CFT, Phys. Rev. Lett. 120 (2018) 201604 [arXiv:1709.01052] [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    R.-G. Cai, S.-M. Ruan, R.-Q. Yang and Y.-L. Zhang, The String Worldsheet as the Holographic Dual of SYK State, arXiv:1709.06297 [INSPIRE].
  55. [55]
    A. Kitaev, Notes on \( \overset{\sim }{\mathrm{SL}}\left(2,\ \mathbb{R}\right) \) representations, arXiv:1711.08169 [INSPIRE].
  56. [56]
    Y.-H. Qi, Y. Seo, S.-J. Sin and G. Song, Schwarzian correction to quantum correlation in SYK model, arXiv:1804.06164 [INSPIRE].
  57. [57]
    H.A. González, D. Grumiller and J. Salzer, Towards a bulk description of higher spin SYK, JHEP 05 (2018) 083 [arXiv:1802.01562] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    G. Tarnopolsky, On large q expansion in the Sachdev-Ye-Kitaev model, arXiv:1801.06871 [INSPIRE].
  59. [59]
    E. Witten, An SYK-Like Model Without Disorder, arXiv:1610.09758 [INSPIRE].
  60. [60]
    R. Gurau, The complete 1/N expansion of colored tensor models in arbitrary dimension, Annales Henri Poincaré 13 (2012) 399 [arXiv:1102.5759] [INSPIRE].
  61. [61]
    V. Bonzom, R. Gurau and V. Rivasseau, Random tensor models in the large N limit: Uncoloring the colored tensor models, Phys. Rev. D 85 (2012) 084037 [arXiv:1202.3637] [INSPIRE].
  62. [62]
    S. Carrozza and A. Tanasa, O(N ) Random Tensor Models, Lett. Math. Phys. 106 (2016) 1531 [arXiv:1512.06718] [INSPIRE].
  63. [63]
    R. Gurau, The complete 1/N expansion of a SYK-like tensor model, Nucl. Phys. B 916 (2017) 386 [arXiv:1611.04032] [INSPIRE].
  64. [64]
    I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].
  65. [65]
    T. Nishinaka and S. Terashima, A note on Sachdev-Ye-Kitaev like model without random coupling, Nucl. Phys. B 926 (2018) 321 [arXiv:1611.10290] [INSPIRE].
  66. [66]
    C. Krishnan, S. Sanyal and P.N. Bala Subramanian, Quantum Chaos and Holographic Tensor Models, JHEP 03 (2017) 056 [arXiv:1612.06330] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    F. Ferrari, The Large D Limit of Planar Diagrams, arXiv:1701.01171 [INSPIRE].
  68. [68]
    R. Gurau, Quenched equals annealed at leading order in the colored SYK model, EPL 119 (2017) 30003 [arXiv:1702.04228] [INSPIRE].CrossRefGoogle Scholar
  69. [69]
    V. Bonzom, L. Lionni and A. Tanasa, Diagrammatics of a colored SYK model and of an SYK-like tensor model, leading and next-to-leading orders, J. Math. Phys. 58 (2017) 052301 [arXiv:1702.06944] [INSPIRE].
  70. [70]
    H. Itoyama, A. Mironov and A. Morozov, Rainbow tensor model with enhanced symmetry and extreme melonic dominance, Phys. Lett. B 771 (2017) 180 [arXiv:1703.04983] [INSPIRE].
  71. [71]
    C. Krishnan, K.V.P. Kumar and S. Sanyal, Random Matrices and Holographic Tensor Models, JHEP 06 (2017) 036 [arXiv:1703.08155] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    H. Itoyama, A. Mironov and A. Morozov, Ward identities and combinatorics of rainbow tensor models, JHEP 06 (2017) 115 [arXiv:1704.08648] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    P. Narayan and J. Yoon, SYK-like Tensor Models on the Lattice, JHEP 08 (2017) 083 [arXiv:1705.01554] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    S. Chaudhuri, V.I. Giraldo-Rivera, A. Joseph, R. Loganayagam and J. Yoon, Abelian Tensor Models on the Lattice, Phys. Rev. D 97 (2018) 086007 [arXiv:1705.01930] [INSPIRE].
  75. [75]
    R. Gurau, The ıϵ prescription in the SYK model, arXiv:1705.08581 [INSPIRE].
  76. [76]
    S. Dartois, H. Erbin and S. Mondal, Conformality of 1/N corrections in SYK-like models, arXiv:1706.00412 [INSPIRE].
  77. [77]
    I.R. Klebanov and G. Tarnopolsky, On Large N Limit of Symmetric Traceless Tensor Models, JHEP 10 (2017) 037 [arXiv:1706.00839] [INSPIRE].
  78. [78]
    A. Mironov and A. Morozov, Correlators in tensor models from character calculus, Phys. Lett. B 774 (2017) 210 [arXiv:1706.03667] [INSPIRE].
  79. [79]
    R. Gurau, The 1/N expansion of tensor models with two symmetric tensors, Commun. Math. Phys. 360 (2018) 985 [arXiv:1706.05328] [INSPIRE].
  80. [80]
    C. Krishnan and K.V.P. Kumar, Towards a Finite-N Hologram, JHEP 10 (2017) 099 [arXiv:1706.05364] [INSPIRE].
  81. [81]
    R. de Mello Koch, R. Mello Koch, D. Gossman and L. Tribelhorn, Gauge Invariants, Correlators and Holography in Bosonic and Fermionic Tensor Models, JHEP 09 (2017) 011 [arXiv:1707.01455] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  82. [82]
    S. Giombi, I.R. Klebanov and G. Tarnopolsky, Bosonic tensor models at large N and small ϵ, Phys. Rev. D 96 (2017) 106014 [arXiv:1707.03866] [INSPIRE].
  83. [83]
    T. Azeyanagi, F. Ferrari and F.I. Schaposnik Massolo, Phase Diagram of Planar Matrix Quantum Mechanics, Tensor and Sachdev-Ye-Kitaev Models, Phys. Rev. Lett. 120 (2018) 061602 [arXiv:1707.03431] [INSPIRE].
  84. [84]
    K. Bulycheva, I.R. Klebanov, A. Milekhin and G. Tarnopolsky, Spectra of Operators in Large N Tensor Models, Phys. Rev. D 97 (2018) 026016 [arXiv:1707.09347] [INSPIRE].
  85. [85]
    S. Choudhury, A. Dey, I. Halder, L. Janagal, S. Minwalla and R. Poojary, Notes on melonic O(N)q−1 tensor models, JHEP 06 (2018) 094 [arXiv:1707.09352] [INSPIRE].
  86. [86]
    C. Krishnan, K.V. Pavan Kumar and D. Rosa, Contrasting SYK-like Models, JHEP 01 (2018) 064 [arXiv:1709.06498] [INSPIRE].CrossRefzbMATHGoogle Scholar
  87. [87]
    T. Azeyanagi, F. Ferrari, P. Gregori, L. Leduc and G. Valette, More on the New Large D Limit of Matrix Models, Annals Phys. 393 (2018) 308 [arXiv:1710.07263] [INSPIRE].
  88. [88]
    H. Itoyama, A. Mironov and A. Morozov, Cut and join operator ring in tensor models, Nucl. Phys. B 932 (2018) 52 [arXiv:1710.10027] [INSPIRE].
  89. [89]
    D. Benedetti, S. Carrozza, R. Gurau and A. Sfondrini, Tensorial Gross-Neveu models, JHEP 01 (2018) 003 [arXiv:1710.10253] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  90. [90]
    N. Halmagyi and S. Mondal, Tensor Models for Black Hole Probes, arXiv:1711.04385 [INSPIRE].
  91. [91]
    J. Ben Geloun and V. Rivasseau, A Renormalizable SYK-type Tensor Field Theory, Annales Henri Poincaré 19 (2018) 3357 [arXiv:1711.05967] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  92. [92]
    D. Benedetti, S. Carrozza, R. Gurau and M. Kolanowski, The 1/N expansion of the symmetric traceless and the antisymmetric tensor models in rank three, arXiv:1712.00249 [INSPIRE].
  93. [93]
    D. Benedetti and R. Gurau, 2PI effective action for the SYK model and tensor field theories, JHEP 05 (2018) 156 [arXiv:1802.05500] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  94. [94]
    C. Krishnan and K.V. Pavan Kumar, Complete Solution of a Gauged Tensor Model, arXiv:1804.10103 [INSPIRE].
  95. [95]
    N. Delporte and V. Rivasseau, The Tensor Track V: Holographic Tensors, 2018, arXiv:1804.11101 [INSPIRE].
  96. [96]
    J. Maldacena and A. Milekhin, To gauge or not to gauge?, JHEP 04 (2018) 084 [arXiv:1802.00428] [INSPIRE].CrossRefzbMATHGoogle Scholar
  97. [97]
    I.R. Klebanov, A. Milekhin, F. Popov and G. Tarnopolsky, Spectra of eigenstates in fermionic tensor quantum mechanics, Phys. Rev. D 97 (2018) 106023 [arXiv:1802.10263] [INSPIRE].
  98. [98]
    D.J. Gross and V. Rosenhaus, A Generalization of Sachdev-Ye-Kitaev, JHEP 02 (2017) 093 [arXiv:1610.01569] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  99. [99]
    W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [arXiv:1610.08917] [INSPIRE].
  100. [100]
    C. Peng, M. Spradlin and A. Volovich, A Supersymmetric SYK-like Tensor Model, JHEP 05 (2017) 062 [arXiv:1612.03851] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  101. [101]
    J. Murugan, D. Stanford and E. Witten, More on Supersymmetric and 2d Analogs of the SYK Model, JHEP 08 (2017) 146 [arXiv:1706.05362] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  102. [102]
    C. Peng, M. Spradlin and A. Volovich, Correlators in the \( \mathcal{N}=2 \) Supersymmetric SYK Model, JHEP 10 (2017) 202 [arXiv:1706.06078] [INSPIRE].
  103. [103]
    N. Sannomiya, H. Katsura and Y. Nakayama, Supersymmetry breaking and Nambu-Goldstone fermions with cubic dispersion, Phys. Rev. D 95 (2017) 065001 [arXiv:1612.02285] [INSPIRE].
  104. [104]
    T. Li, J. Liu, Y. Xin and Y. Zhou, Supersymmetric SYK model and random matrix theory, JHEP 06 (2017) 111 [arXiv:1702.01738] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  105. [105]
    S. Förste and I. Golla, Nearly AdS 2 SUGRA and the super-Schwarzian, Phys. Lett. B 771 (2017) 157 [arXiv:1703.10969] [INSPIRE].
  106. [106]
    T. Kanazawa and T. Wettig, Complete random matrix classification of SYK models with \( \mathcal{N}=0,1 \) and 2 supersymmetry, JHEP 09 (2017) 050 [arXiv:1706.03044] [INSPIRE].
  107. [107]
    N. Hunter-Jones, J. Liu and Y. Zhou, On thermalization in the SYK and supersymmetric SYK models, JHEP 02 (2018) 142 [arXiv:1710.03012] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  108. [108]
    N. Hunter-Jones and J. Liu, Chaos and random matrices in supersymmetric SYK, JHEP 05 (2018) 202 [arXiv:1710.08184] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  109. [109]
    P. Narayan and J. Yoon, Supersymmetric SYK Model with Global Symmetry, JHEP 08 (2018) 159 [arXiv:1712.02647] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  110. [110]
    S. Förste, J. Kames-King and M. Wiesner, Towards the Holographic Dual of N = 2 SYK, JHEP 03 (2018) 028 [arXiv:1712.07398] [INSPIRE].
  111. [111]
    A.M. García-García, Y. Jia and J.J.M. Verbaarschot, Universality and Thouless energy in the supersymmetric Sachdev-Ye-Kitaev Model, Phys. Rev. D 97 (2018) 106003 [arXiv:1801.01071] [INSPIRE].
  112. [112]
    K. Bulycheva, \( \mathcal{N}=2 \) SYK model in the superspace formalism, JHEP 04 (2018) 036 [arXiv:1801.09006] [INSPIRE].
  113. [113]
    Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  114. [114]
    M. Berkooz, P. Narayan, M. Rozali and J. Simón, Higher Dimensional Generalizations of the SYK Model, JHEP 01 (2017) 138 [arXiv:1610.02422] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  115. [115]
    R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].
  116. [116]
    G. Turiaci and H. Verlinde, Towards a 2d QFT Analog of the SYK Model, JHEP 10 (2017) 167 [arXiv:1701.00528] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  117. [117]
    M. Berkooz, P. Narayan, M. Rozali and J. Simón, Comments on the Random Thirring Model, JHEP 09 (2017) 057 [arXiv:1702.05105] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  118. [118]
    Y. Gu, A. Lucas and X.-L. Qi, Energy diffusion and the butterfly effect in inhomogeneous Sachdev-Ye-Kitaev chains, SciPost Phys. 2 (2017) 018 [arXiv:1702.08462] [INSPIRE].CrossRefGoogle Scholar
  119. [119]
    S.-K. Jian and H. Yao, Solvable Sachdev-Ye-Kitaev models in higher dimensions: from diffusion to many-body localization, Phys. Rev. Lett. 119 (2017) 206602 [arXiv:1703.02051] [INSPIRE].CrossRefGoogle Scholar
  120. [120]
    X. Chen, R. Fan, Y. Chen, H. Zhai and P. Zhang, Competition between Chaotic and Nonchaotic Phases in a Quadratically Coupled Sachdev-Ye-Kitaev Model, Phys. Rev. Lett. 119 (2017) 207603 [arXiv:1705.03406] [INSPIRE].CrossRefGoogle Scholar
  121. [121]
    Y. Chen, H. Zhai and P. Zhang, Tunable Quantum Chaos in the Sachdev-Ye-Kitaev Model Coupled to a Thermal Bath, JHEP 07 (2017) 150 [arXiv:1705.09818] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  122. [122]
    P. Zhang, Dispersive Sachdev-Ye-Kitaev model: Band structure and quantum chaos, Phys. Rev. B 96 (2017) 205138 [arXiv:1707.09589] [INSPIRE].
  123. [123]
    S.-K. Jian, Z.-Y. Xian and H. Yao, Quantum criticality and duality in the Sachdev-Ye-Kitaev/AdS 2 chain, Phys. Rev. B 97 (2018) 205141 [arXiv:1709.02810] [INSPIRE].
  124. [124]
    D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  125. [125]
    W. Cai, X.-H. Ge and G.-H. Yang, Diffusion in higher dimensional SYK model with complex fermions, JHEP 01 (2018) 076 [arXiv:1711.07903] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  126. [126]
    X.-H. Ge, S.-J. Sin, Y. Tian, S.-F. Wu and S.-Y. Wu, Charged BTZ-like black hole solutions and the diffusivity-butterfly velocity relation, JHEP 01 (2018) 068 [arXiv:1712.00705] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  127. [127]
    K. Bulycheva, A note on the SYK model with complex fermions, JHEP 12 (2017) 069 [arXiv:1706.07411] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  128. [128]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].
  129. [129]
    M.R. Gaberdiel, W. Li, C. Peng and H. Zhang, The supersymmetric affine Yangian, JHEP 05 (2018) 200 [arXiv:1711.07449] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  130. [130]
    M.R. Gaberdiel, W. Li and C. Peng, Twin-plane-partitions and \( \mathcal{N}=2 \) affine Yangian, arXiv:1807.11304 [INSPIRE].
  131. [131]
    M. Henneaux, G. Lucena Gómez, J. Park and S.-J. Rey, Super-W Asymptotic Symmetry of Higher-Spin AdS3 Supergravity, JHEP 06 (2012) 037 [arXiv:1203.5152] [INSPIRE].
  132. [132]
    K. Hanaki and C. Peng, Symmetries of Holographic Super-Minimal Models, JHEP 08 (2013) 030 [arXiv:1203.5768] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  133. [133]
    C. Peng, Dualities from higher-spin supergravity, JHEP 03 (2013) 054 [arXiv:1211.6748] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  134. [134]
    M.R. Gaberdiel and C. Peng, The symmetry of large \( \mathcal{N}=4 \) holography, JHEP 05 (2014) 152 [arXiv:1403.2396] [INSPIRE].
  135. [135]
    M.R. Gaberdiel, R. Gopakumar, W. Li and C. Peng, Higher Spins and Yangian Symmetries, JHEP 04 (2017) 152 [arXiv:1702.05100] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  136. [136]
    M.R. Gaberdiel, C. Peng and I.G. Zadeh, Higgsing the stringy higher spin symmetry, JHEP 10 (2015) 101 [arXiv:1506.02045] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  137. [137]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A semiclassical limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051] [INSPIRE].
  138. [138]
    E. Perlmutter, Bounding the Space of Holographic CFTs with Chaos, JHEP 10 (2016) 069 [arXiv:1602.08272] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  139. [139]
    N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017 [hep-th/9903224] [INSPIRE].
  140. [140]
    J.M. Maldacena and H. Ooguri, Strings in AdS3 and SL(2, ℝ) WZW model 1.: The spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].
  141. [141]
    O. Aharony, Z. Komargodski and S.S. Razamat, On the worldsheet theories of strings dual to free large N gauge theories, JHEP 05 (2006) 016 [hep-th/0602226] [INSPIRE].
  142. [142]
    M.R. Gaberdiel, R. Gopakumar and C. Hull, Stringy AdS 3 from the worldsheet, JHEP 07 (2017) 090 [arXiv:1704.08665] [INSPIRE].
  143. [143]
    K. Ferreira, M.R. Gaberdiel and J.I. Jottar, Higher spins on AdS 3 from the worldsheet, JHEP 07 (2017) 131 [arXiv:1704.08667] [INSPIRE].
  144. [144]
    G. Giribet, C. Hull, M. Kleban, M. Porrati and E. Rabinovici, Superstrings on AdS 3 at k = 1, JHEP 08 (2018) 204 [arXiv:1803.04420] [INSPIRE].
  145. [145]
    M.R. Gaberdiel and R. Gopakumar, Tensionless string spectra on AdS 3, JHEP 05 (2018) 085 [arXiv:1803.04423] [INSPIRE].
  146. [146]
    M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].
  147. [147]
    C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ Triality: from Higher Spin Fields to Strings, J. Phys. A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsBrown UniversityProvidenceU.S.A.

Personalised recommendations