Advertisement

Journal of High Energy Physics

, 2018:62 | Cite as

Factorisation and subtraction beyond NLO

  • L. MagneaEmail author
  • E. Maina
  • G. Pelliccioli
  • C. Signorile-Signorile
  • P. Torrielli
  • S. Uccirati
Open Access
Regular Article - Theoretical Physics

Abstract

We provide a general method to construct local infrared subtraction counterterms for unresolved radiative contributions to differential cross sections, to any order in perturbation theory. We start from the factorised structure of virtual corrections to scattering amplitudes, where soft and collinear divergences are organised in gauge-invariant matrix elements of fields and Wilson lines, and we define radiative eikonal form factors and jet functions which are fully differential in the radiation phase space, and can be shown to cancel virtual poles upon integration by using completeness relations and general theorems on the cancellation of infrared singularities. Our method reproduces known results at NLO and NNLO, and yields substantial simplifications in the organisation of the subtraction procedure, which will help in the construction of efficient subtraction algorithms at higher orders.

Keywords

QCD Phenomenology Jets 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Bloch and A. Nordsieck, Note on the radiation field of the electron, Phys. Rev. 52 (1937) 54 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    T.D. Lee and M. Nauenberg, Degenerate systems and mass singularities, Phys. Rev. 133 (1964) B1549 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    G. Grammer, Jr. and D.R. Yennie, Improved treatment for the infrared divergence problem in quantum electrodynamics, Phys. Rev. D 8 (1973) 4332 [INSPIRE].
  5. [5]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Order α s4 QCD corrections to Z and τ decays, Phys. Rev. Lett. 101 (2008) 012002 [arXiv:0801.1821] [INSPIRE].
  6. [6]
    P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn and J. Rittinger, Complete \( \mathcal{O}\left({\alpha}_s^4\right) \) QCD corrections to hadronic Z-decays, Phys. Rev. Lett. 108 (2012) 222003 [arXiv:1201.5804] [INSPIRE].
  7. [7]
    A. Sen, Asymptotic behavior of the wide angle on-shell quark scattering amplitudes in non-Abelian gauge theories, Phys. Rev. D 28 (1983) 860 [INSPIRE].
  8. [8]
    J.C. Collins, Sudakov form-factors, Adv. Ser. Direct. High Energy Phys. 5 (1989) 573 [hep-ph/0312336] [INSPIRE].
  9. [9]
    G.F. Sterman, Partons, factorization and resummation, TASI 95, in QCD and beyond. Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI-95, Boulder, CO, U.S.A., 4-30 June 1995, pg. 327 [hep-ph/9606312] [INSPIRE].
  10. [10]
    S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
  11. [11]
    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].
  12. [12]
    L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E. Gardi and L. Magnea, Infrared singularities in QCD amplitudes, Nuovo Cim. C 32N5-6 (2009) 137 [arXiv:0908.3273] [INSPIRE].
  15. [15]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].
  16. [16]
    T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 11 (2013) 024] [arXiv:0903.1126] [INSPIRE].
  17. [17]
    I. Feige and M.D. Schwartz, Hard-soft-collinear factorization to all orders, Phys. Rev. D 90 (2014) 105020 [arXiv:1403.6472] [INSPIRE].
  18. [18]
    Ø. Almelid, C. Duhr and E. Gardi, Three-loop corrections to the soft anomalous dimension in multileg scattering, Phys. Rev. Lett. 117 (2016) 172002 [arXiv:1507.00047] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Ø. Almelid, C. Duhr, E. Gardi, A. McLeod and C.D. White, Bootstrapping the QCD soft anomalous dimension, JHEP 09 (2017) 073 [arXiv:1706.10162] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    D.A. Kosower, All order collinear behavior in gauge theories, Nucl. Phys. B 552 (1999) 319 [hep-ph/9901201] [INSPIRE].
  21. [21]
    S. Catani and M. Grazzini, Collinear factorization and splitting functions for next-to-next-to-leading order QCD calculations, Phys. Lett. B 446 (1999) 143 [hep-ph/9810389] [INSPIRE].
  22. [22]
    S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287 [hep-ph/9908523] [INSPIRE].
  23. [23]
    J.M. Campbell and E.W.N. Glover, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys. B 527 (1998) 264 [hep-ph/9710255] [INSPIRE].
  24. [24]
    Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The infrared behavior of one loop QCD amplitudes at next-to-next-to leading order, Phys. Rev. D 60 (1999) 116001 [hep-ph/9903516] [INSPIRE].
  25. [25]
    S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591 (2000) 435 [hep-ph/0007142] [INSPIRE].
  26. [26]
    V. Del Duca, A. Frizzo and F. Maltoni, Factorization of tree QCD amplitudes in the high-energy limit and in the collinear limit, Nucl. Phys. B 568 (2000) 211 [hep-ph/9909464] [INSPIRE].
  27. [27]
    C. Duhr and T. Gehrmann, The two-loop soft current in dimensional regularization, Phys. Lett. B 727 (2013) 452 [arXiv:1309.4393] [INSPIRE].
  28. [28]
    Y. Li and H.X. Zhu, Single soft gluon emission at two loops, JHEP 11 (2013) 080 [arXiv:1309.4391] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P. Banerjee, P.K. Dhani and V. Ravindran, Gluon jet function at three loops in QCD, Phys. Rev. D 98 (2018) 094016 [arXiv:1805.02637] [INSPIRE].
  30. [30]
    R. Brüser, Z.L. Liu and M. Stahlhofen, Three-loop quark jet function, Phys. Rev. Lett. 121 (2018) 072003 [arXiv:1804.09722] [INSPIRE].
  31. [31]
    W.T. Giele, E.W.N. Glover and D.A. Kosower, Higher order corrections to jet cross-sections in hadron colliders, Nucl. Phys. B 403 (1993) 633 [hep-ph/9302225] [INSPIRE].
  32. [32]
    W.T. Giele, E.W.N. Glover and D.A. Kosower, The inclusive two jet triply differential cross-section, Phys. Rev. D 52 (1995) 1486 [hep-ph/9412338] [INSPIRE].
  33. [33]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].
  34. [34]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  35. [35]
    Z. Nagy and D.E. Soper, General subtraction method for numerical calculation of one loop QCD matrix elements, JHEP 09 (2003) 055 [hep-ph/0308127] [INSPIRE].
  36. [36]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].
  37. [37]
    T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].
  38. [38]
    R. Frederix, T. Gehrmann and N. Greiner, Automation of the dipole subtraction method in MadGraph/MadEvent, JHEP 09 (2008) 122 [arXiv:0808.2128] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the dipoles, JHEP 08 (2009) 085 [arXiv:0905.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    K. Hasegawa, S. Moch and P. Uwer, AutoDipole: automated generation of dipole subtraction terms, Comput. Phys. Commun. 181 (2010) 1802 [arXiv:0911.4371] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    S. Platzer and S. Gieseke, Dipole showers and automated NLO matching in HERWIG++, Eur. Phys. J. C 72 (2012) 2187 [arXiv:1109.6256] [INSPIRE].
  44. [44]
    J. Reuter et al., Automation of NLO processes and decays and POWHEG matching in WHIZARD, J. Phys. Conf. Ser. 762 (2016) 012059 [arXiv:1602.06270] [INSPIRE].
  45. [45]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
  46. [46]
    M. Grazzini, S. Kallweit and M. Wiesemann, Fully differential NNLO computations with MATRIX, Eur. Phys. J. C 78 (2018) 537 [arXiv:1711.06631] [INSPIRE].
  47. [47]
    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].
  48. [48]
    J. Gaunt, M. Stahlhofen, F.J. Tackmann and J.R. Walsh, N -jettiness subtractions for NNLO QCD calculations, JHEP 09 (2015) 058 [arXiv:1505.04794] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    R. Boughezal et al., Z-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 116 (2016) 152001 [arXiv:1512.01291] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    R. Boughezal et al., Color singlet production at NNLO in MCFM, Eur. Phys. J. C 77 (2017) 7 [arXiv:1605.08011] [INSPIRE].
  51. [51]
    R. Boughezal, X. Liu and F. Petriello, Power corrections in the N -jettiness subtraction scheme, JHEP 03 (2017) 160 [arXiv:1612.02911] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    R. Boughezal, A. Isgrò and F. Petriello, Next-to-leading-logarithmic power corrections for N -jettiness subtraction in color-singlet production, Phys. Rev. D 97 (2018) 076006 [arXiv:1802.00456] [INSPIRE].
  53. [53]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Jet rates in electron-positron annihilation at \( \mathcal{O}\left({\alpha}_s^4\right) \) in QCD, Phys. Rev. Lett. 100 (2008) 172001 [arXiv:0802.0813] [INSPIRE].
  54. [54]
    S. Weinzierl, NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett. 101 (2008) 162001 [arXiv:0807.3241] [INSPIRE].
  55. [55]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan, Precise QCD predictions for the production of a Z boson in association with a hadronic jet, Phys. Rev. Lett. 117 (2016) 022001 [arXiv:1507.02850] [INSPIRE].
  56. [56]
    J. Currie, T. Gehrmann and J. Niehues, Precise QCD predictions for the production of dijet final states in deep inelastic scattering, Phys. Rev. Lett. 117 (2016) 042001 [arXiv:1606.03991] [INSPIRE].
  57. [57]
    J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and J. Pires, Precise predictions for dijet production at the LHC, Phys. Rev. Lett. 119 (2017) 152001 [arXiv:1705.10271] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].
  59. [59]
    M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark pairs at the LHC, Phys. Rev. Lett. 116 (2016) 082003 [arXiv:1511.00549] [INSPIRE].
  60. [60]
    M. Czakon, P. Fiedler, D. Heymes and A. Mitov, NNLO QCD predictions for fully-differential top-quark pair production at the Tevatron, JHEP 05 (2016) 034 [arXiv:1601.05375] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    F. Caola, K. Melnikov and R. Röntsch, Nested soft-collinear subtractions in NNLO QCD computations, Eur. Phys. J. C 77 (2017) 248 [arXiv:1702.01352] [INSPIRE].
  62. [62]
    F. Caola, G. Luisoni, K. Melnikov and R. Röntsch, NNLO QCD corrections to associated WH production and \( H\to b\overline{b} \) decay, Phys. Rev. D 97 (2018) 074022 [arXiv:1712.06954] [INSPIRE].
  63. [63]
    F. Caola, M. Delto, H. Frellesvig and K. Melnikov, The double-soft integral for an arbitrary angle between hard radiators, Eur. Phys. J. C 78 (2018) 687 [arXiv:1807.05835] [INSPIRE].
  64. [64]
    G. Somogyi, Z. Trócsányi and V. Del Duca, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of doubly-real emissions, JHEP 01 (2007) 070 [hep-ph/0609042] [INSPIRE].
  65. [65]
    G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of real-virtual emission, JHEP 01 (2007) 052 [hep-ph/0609043] [INSPIRE].
  66. [66]
    V. Del Duca, C. Duhr, A. Kardos, G. Somogyi and Z. Trócsányi, Three-jet production in electron-positron collisions at next-to-next-to-leading order accuracy, Phys. Rev. Lett. 117 (2016) 152004 [arXiv:1603.08927] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M. Cacciari, F.A. Dreyer, A. Karlberg, G.P. Salam and G. Zanderighi, Fully differential vector-boson-fusion Higgs production at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082002 [Erratum ibid. 120 (2018) 139901] [arXiv:1506.02660] [INSPIRE].
  68. [68]
    G.F.R. Sborlini, F. Driencourt-Mangin and G. Rodrigo, Four-dimensional unsubtraction with massive particles, JHEP 10 (2016) 162 [arXiv:1608.01584] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    F. Herzog, Geometric IR subtraction for final state real radiation, JHEP 08 (2018) 006 [arXiv:1804.07949] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    F. Dulat, B. Mistlberger and A. Pelloni, Differential Higgs production at N 3 LO beyond threshold, JHEP 01 (2018) 145 [arXiv:1710.03016] [INSPIRE].
  71. [71]
    J. Currie, T. Gehrmann, E.W.N. Glover, A. Huss, J. Niehues and A. Vogt, N 3 LO corrections to jet production in deep inelastic scattering using the Projection-to-Born method, JHEP 05 (2018) 209 [arXiv:1803.09973] [INSPIRE].
  72. [72]
    L. Cieri, X. Chen, T. Gehrmann, E.W.N. Glover and A. Huss, Higgs boson production at the LHC using the q T subtraction formalism at N 3 LO QCD, arXiv:1807.11501 [INSPIRE].
  73. [73]
    L. Magnea, E. Maina, G. Pelliccioli, C. Signorile-Signorile, P. Torrielli and S. Uccirati, Local analytic sector subtraction at NNLO, arXiv:1806.09570 [INSPIRE].
  74. [74]
    L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D 42 (1990) 4222 [INSPIRE].
  75. [75]
    A. Bassetto, M. Ciafaloni and G. Marchesini, Jet structure and infrared sensitive quantities in perturbative QCD, Phys. Rept. 100 (1983) 201 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, Four-loop non-singlet splitting functions in the planar limit and beyond, JHEP 10 (2017) 041 [arXiv:1707.08315] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  77. [77]
    R.H. Boels, T. Huber and G. Yang, The Sudakov form factor at four loops in maximal super Yang-Mills theory, JHEP 01 (2018) 153 [arXiv:1711.08449] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of hard processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1 [hep-ph/0409313] [INSPIRE].
  79. [79]
    T. Becher and M.D. Schwartz, Direct photon production with effective field theory, JHEP 02 (2010) 040 [arXiv:0911.0681] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  80. [80]
    T. Becher and G. Bell, The gluon jet function at two-loop order, Phys. Lett. B 695 (2011) 252 [arXiv:1008.1936] [INSPIRE].
  81. [81]
    D. Bonocore, E. Laenen, L. Magnea, S. Melville, L. Vernazza and C.D. White, A factorization approach to next-to-leading-power threshold logarithms, JHEP 06 (2015) 008 [arXiv:1503.05156] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    E. Gardi, From webs to polylogarithms, JHEP 04 (2014) 044 [arXiv:1310.5268] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    G. Falcioni, E. Gardi, M. Harley, L. Magnea and C.D. White, Multiple gluon exchange webs, JHEP 10 (2014) 010 [arXiv:1407.3477] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    A. Mitov, G. Sterman and I. Sung, Diagrammatic exponentiation for products of Wilson lines, Phys. Rev. D 82 (2010) 096010 [arXiv:1008.0099] [INSPIRE].
  85. [85]
    E. Gardi, J.M. Smillie and C.D. White, On the renormalization of multiparton webs, JHEP 09 (2011) 114 [arXiv:1108.1357] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  86. [86]
    E. Gardi, J.M. Smillie and C.D. White, The non-Abelian exponentiation theorem for multiple Wilson lines, JHEP 06 (2013) 088 [arXiv:1304.7040] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  87. [87]
    E. Laenen, G.F. Sterman and W. Vogelsang, Recoil and threshold corrections in short distance cross-sections, Phys. Rev. D 63 (2001) 114018 [hep-ph/0010080] [INSPIRE].
  88. [88]
    S.D. Badger and E.W.N. Glover, Two loop splitting functions in QCD, JHEP 07 (2004) 040 [hep-ph/0405236] [INSPIRE].
  89. [89]
    J.C. Collins and D.E. Soper, Back-to-back jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. B 213 (1983) 545] [INSPIRE].
  90. [90]
    G.F. Sterman, Summation of large corrections to short distance hadronic cross-sections, Nucl. Phys. B 281 (1987) 310 [INSPIRE].
  91. [91]
    O. Erdoğan and G. Sterman, Ultraviolet divergences and factorization for coordinate-space amplitudes, Phys. Rev. D 91 (2015) 065033 [arXiv:1411.4588] [INSPIRE].
  92. [92]
    S.M. Aybat and G.F. Sterman, Soft-gluon cancellation, phases and factorization with initial-state partons, Phys. Lett. B 671 (2009) 46 [arXiv:0811.0246] [INSPIRE].
  93. [93]
    S. Catani, D. de Florian and G. Rodrigo, Space-like (versus time-like) collinear limits in QCD: is factorization violated?, JHEP 07 (2012) 026 [arXiv:1112.4405] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    I.Z. Rothstein and I.W. Stewart, An effective field theory for forward scattering and factorization violation, JHEP 08 (2016) 025 [arXiv:1601.04695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  95. [95]
    J. Collins, Foundations of perturbative QCD, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 32 (2011) 1 [INSPIRE].
  96. [96]
    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • L. Magnea
    • 1
    Email author
  • E. Maina
    • 1
  • G. Pelliccioli
    • 1
  • C. Signorile-Signorile
    • 1
  • P. Torrielli
    • 1
  • S. Uccirati
    • 1
  1. 1.Dipartimento di Fisica and Arnold-Regge CenterUniversità di Torino and INFN, Sezione di TorinoTorinoItaly

Personalised recommendations