Journal of High Energy Physics

, 2018:61 | Cite as

Two-current correlations in the pion on the lattice

  • Gunnar S. Bali
  • Peter C. Bruns
  • Luca Castagnini
  • Markus DiehlEmail author
  • Jonathan R. Gaunt
  • Benjamin Gläßle
  • Andreas Schäfer
  • André Sternbeck
  • Christian Zimmermann
Open Access
Regular Article - Theoretical Physics


We perform a systematic study of the correlation functions of two quark currents in a pion using lattice QCD. We obtain good signals for all but one of the relevant Wick contractions of quark fields. We investigate the quark mass dependence of our results and test the importance of correlations between the quark and the antiquark in the pion. Our lattice data are compared with predictions from chiral perturbation theory.


Lattice QCD Chiral Lagrangians 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K. Barad, M. Ogilvie and C. Rebbi, Quark-anti-quark charge distributions and confinement, Phys. Lett. B 143 (1984) 222 [INSPIRE].CrossRefGoogle Scholar
  2. [2]
    K. Barad, M. Ogilvie and C. Rebbi, Quark-anti-quark charge distributions, Annals Phys. 168 (1986) 284 [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    W. Wilcox and K.-F. Liu, Charge radii from lattice relative charge distributions, Phys. Lett. B 172 (1986) 62 [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    W. Wilcox, K.-F. Liu, B.-A. Li and Y.-L. Zhu, Relative charge distributions for quarks in lattice mesons, Phys. Rev. D 34 (1986) 3882 [INSPIRE].Google Scholar
  5. [5]
    W. Wilcox, Current overlap methods in lattice QCD, Phys. Rev. D 43 (1991) 2443 [INSPIRE].Google Scholar
  6. [6]
    M.C. Chu, M. Lissia and J.W. Negele, Hadron structure in lattice QCD. 1. Correlation functions and wave functions, Nucl. Phys. B 360 (1991) 31 [INSPIRE].
  7. [7]
    M. Lissia, M.C. Chu, J.W. Negele and J.M. Grandy, Comparison of hadron quark distributions from lattice QCD and the MIT bag model, Nucl. Phys. A 555 (1993) 272 [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    M. Burkardt, J.M. Grandy and J.W. Negele, Calculation and interpretation of hadron correlation functions in lattice QCD, Annals Phys. 238 (1995) 441 [hep-lat/9406009] [INSPIRE].
  9. [9]
    C. Alexandrou, P. de Forcrand and A. Tsapalis, Probing hadron wave functions in lattice QCD, Phys. Rev. D 66 (2002) 094503 [hep-lat/0206026] [INSPIRE].
  10. [10]
    C. Alexandrou, P. de Forcrand and A. Tsapalis, The matter and the pseudoscalar densities in lattice QCD, Phys. Rev. D 68 (2003) 074504 [hep-lat/0307009] [INSPIRE].
  11. [11]
    C. Alexandrou and G. Koutsou, A study of hadron deformation in lattice QCD, Phys. Rev. D 78 (2008) 094506 [arXiv:0809.2056] [INSPIRE].Google Scholar
  12. [12]
    P.C. Bruns, Pion correlation functions in position space from chiral perturbation theory with resonance exchange, arXiv:1512.06650 [INSPIRE].
  13. [13]
    M. Diehl, D. Ostermeier and A. Schäfer, Elements of a theory for multiparton interactions in QCD, JHEP 03 (2012) 089 [Erratum ibid. 03 (2016) 001] [arXiv:1111.0910] [INSPIRE].
  14. [14]
    P. Hasenfratz and M. Bissegger, CP, T and CPT in the non-perturbative formulation of chiral gauge theories, Phys. Lett. B 613 (2005) 57 [hep-lat/0501010] [INSPIRE].
  15. [15]
    G.S. Bali et al., Nucleon isovector couplings from N f = 2 lattice QCD, Phys. Rev. D 91 (2015) 054501 [arXiv:1412.7336] [INSPIRE].Google Scholar
  16. [16]
    G.S. Bali et al., The momentxu − d of the nucleon from N f = 2 lattice QCD down to nearly physical quark masses, Phys. Rev. D 90 (2014) 074510 [arXiv:1408.6850] [INSPIRE].Google Scholar
  17. [17]
    RQCD collaboration, G.S. Bali, S. Collins, D. Richtmann, A. Schäfer, W. Söldner and A. Sternbeck, Direct determinations of the nucleon and pion σ terms at nearly physical quark masses, Phys. Rev. D 93 (2016) 094504 [arXiv:1603.00827] [INSPIRE].
  18. [18]
    G.S. Bali, S. Collins, A. Cox and A. Schäfer, Masses and decay constants of the D s0*(2317) and D s1(2460) from N f = 2 lattice QCD close to the physical point, Phys. Rev. D 96 (2017) 074501 [arXiv:1706.01247] [INSPIRE].Google Scholar
  19. [19]
    UKQCD collaboration, M. Foster and C. Michael, Quark mass dependence of hadron masses from lattice QCD, Phys. Rev. D 59 (1999) 074503 [hep-lat/9810021] [INSPIRE].
  20. [20]
    G. Martinelli and C.T. Sachrajda, A lattice study of nucleon structure, Nucl. Phys. B 316 (1989) 355 [INSPIRE].CrossRefGoogle Scholar
  21. [21]
    Y.-B. Yang, A. Alexandru, T. Draper, M. Gong and K.-F. Liu, Stochastic method with low mode substitution for nucleon isovector matrix elements, Phys. Rev. D 93 (2016) 034503 [arXiv:1509.04616] [INSPIRE].Google Scholar
  22. [22]
    S. Gusken, A study of smearing techniques for hadron correlation functions, Nucl. Phys. Proc. Suppl. 17 (1990) 361 [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    G.S. Bali, B. Lang, B.U. Musch and A. Schäfer, Novel quark smearing for hadrons with high momenta in lattice QCD, Phys. Rev. D 93 (2016) 094515 [arXiv:1602.05525] [INSPIRE].Google Scholar
  24. [24]
    QCDSF/UKQCD collaboration, D. Brömmel et al., The pion form-factor from lattice QCD with two dynamical flavours, Eur. Phys. J. C 51 (2007) 335 [hep-lat/0608021] [INSPIRE].
  25. [25]
    C. Thron, S.J. Dong, K.F. Liu and H.P. Ying, Padé-Z 2 estimator of determinants, Phys. Rev. D 57 (1998) 1642 [hep-lat/9707001] [INSPIRE].
  26. [26]
    SESAM collaboration, G.S. Bali, H. Neff, T. Düssel, T. Lippert and K. Schilling, Observation of string breaking in QCD, Phys. Rev. D 71 (2005) 114513 [hep-lat/0505012] [INSPIRE].
  27. [27]
    G.S. Bali, S. Collins and A. Schäfer, Effective noise reduction techniques for disconnected loops in lattice QCD, Comput. Phys. Commun. 181 (2010) 1570 [arXiv:0910.3970] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    M. Göckeler et al., Perturbative and nonperturbative renormalization in lattice QCD, Phys. Rev. D 82 (2010) 114511 [Erratum ibid. D 86 (2012) 099903] [arXiv:1003.5756] [INSPIRE].
  29. [29]
    S. Capitani et al., Renormalization and off-shell improvement in lattice perturbation theory, Nucl. Phys. B 593 (2001) 183 [hep-lat/0007004] [INSPIRE].
  30. [30]
    S. Sint and P. Weisz, Further results on O(a) improved lattice QCD to one loop order of perturbation theory, Nucl. Phys. B 502 (1997) 251 [hep-lat/9704001] [INSPIRE].
  31. [31]
    Y. Taniguchi and A. Ukawa, Perturbative calculation of improvement coefficients to O(g 2 a) for bilinear quark operators in lattice QCD, Phys. Rev. D 58 (1998) 114503 [hep-lat/9806015] [INSPIRE].
  32. [32]
    P. Fritzsch, J. Heitger and N. Tantalo, Non-perturbative improvement of quark mass renormalization in two-flavour lattice QCD, JHEP 08 (2010) 074 [arXiv:1004.3978] [INSPIRE].CrossRefzbMATHGoogle Scholar
  33. [33]
    R.A. Briceño, J.V. Guerrero, M.T. Hansen and C.J. Monahan, Finite-volume effects due to spatially nonlocal operators, Phys. Rev. D 98 (2018) 014511 [arXiv:1805.01034] [INSPIRE].MathSciNetGoogle Scholar
  34. [34]
    K. Cichy, K. Jansen and P. Korcyl, Non-perturbative renormalization in coordinate space for N f = 2 maximally twisted mass fermions with tree-level Symanzik improved gauge action, Nucl. Phys. B 865 (2012) 268 [arXiv:1207.0628] [INSPIRE].CrossRefzbMATHGoogle Scholar
  35. [35]
    M. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for ζ → 0, Phys. Rev. D 62 (2000) 071503 [Erratum ibid. D 66 (2002) 119903] [hep-ph/0005108] [INSPIRE].
  36. [36]
    S. Dürr, Validity of ChPTis M π = 135 MeV small enough?, PoS(LATTICE2014)006, (2015) [arXiv:1412.6434] [INSPIRE].
  37. [37]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 74 (2014) 2890 [arXiv:1310.8555] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    J.F. Donoghue, C. Ramirez and G. Valencia, The spectrum of QCD and chiral Lagrangians of the strong and weak interactions, Phys. Rev. D 39 (1989) 1947 [INSPIRE].Google Scholar
  39. [39]
    G. Ecker, J. Gasser, A. Pich and E. de Rafael, The role of resonances in chiral perturbation theory, Nucl. Phys. B 321 (1989) 311 [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    SciDAC, LHPC and UKQCD collaborations, R.G. Edwards and B. Joo, The Chroma software system for lattice QCD, Nucl. Phys. Proc. Suppl. 140 (2005) 832 [hep-lat/0409003] [INSPIRE].
  41. [41]
    M. Lüscher and S. Schaefer, Lattice QCD with open boundary conditions and twisted-mass reweighting, Comput. Phys. Commun. 184 (2013) 519 [arXiv:1206.2809] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  42. [42]
    Y. Nakamura and H. Stüben, BQCDBerlin Quantum Chromodynamics Program, PoS(LATTICE2010)040, (2010) [arXiv:1011.0199] [INSPIRE].
  43. [43]
    Y. Nakamura et al., Lattice QCD applications on QPACE, arXiv:1103.1363 [INSPIRE].
  44. [44]
    M. Frigo and S. Johnson, The design and implementation of FFTW3, Proc. IEEE 93 (2005) 216.CrossRefGoogle Scholar
  45. [45]
    D. Binosi and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [INSPIRE].
  46. [46]
    D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Gunnar S. Bali
    • 1
    • 2
  • Peter C. Bruns
    • 3
  • Luca Castagnini
    • 1
  • Markus Diehl
    • 4
    • 5
    Email author
  • Jonathan R. Gaunt
    • 6
  • Benjamin Gläßle
    • 7
  • Andreas Schäfer
    • 1
  • André Sternbeck
    • 8
  • Christian Zimmermann
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of RegensburgRegensburgGermany
  2. 2.Department of Theoretical PhysicsTata Institute of Fundamental ResearchMumbaiIndia
  3. 3.Nuclear Physics InstituteAcademy of Sciences of the Czech RepublicŘežCzech Republic
  4. 4.Fachbereich PhysikUniversity of HamburgHamburgGermany
  5. 5.Deutsches Elektronen-Synchroton DESYHamburgGermany
  6. 6.Theoretical Physics DepartmentCERNGeneva 23Switzerland
  7. 7.Zentrum für DatenverarbeitungUniversität TübingenTübingenGermany
  8. 8.Theoretisch-Physikalisches InstitutFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations