# Flows, fixed points and duality in Chern-Simons-matter theories

- 58 Downloads
- 2 Citations

## Abstract

It has been conjectured that 3d fermions minimally coupled to Chern-Simons gauge fields are dual to 3d critical scalars, also minimally coupled to Chern-Simons gauge fields. The large *N* arguments for this duality can formally be used to show that Chern-Simons-gauged *critical* (Gross-Neveu) fermions are also dual to gauged ‘*regular* ’ scalars at every order in a 1*/N* expansion, provided both theories are well-defined (when one fine-tunes the two relevant parameters of each of these theories to zero). In the strict large *N* limit these ‘quasi-bosonic’ theories appear as fixed lines parameterized by *x*_{6}, the coefficient of a sextic term in the potential. While *x*_{6} is an exactly marginal deformation at leading order in large *N*, it develops a non-trivial *β* function at first subleading order in 1*/N*. We demonstrate that the beta function is a cubic polynomial in *x*_{6} at this order in 1*/N*, and compute the coefficients of the cubic and quadratic terms as a function of the ’t Hooft coupling. We conjecture that flows governed by this leading large *N* beta function have three fixed points for *x*_{6} at every non-zero value of the ’t Hooft coupling, implying the existence of three distinct regular bosonic and three distinct dual critical fermionic conformal fixed points, at every value of the ’t Hooft coupling. We analyze the phase structure of these fixed point theories at zero temperature. We also construct dual pairs of large *N* fine-tuned renormalization group flows from supersymmetric \( \mathcal{N}=2 \) Chern-Simons-matter theories, such that one of the flows ends up in the IR at a regular boson theory while its dual partner flows to a critical fermion theory. This construction suggests that the duality between these theories persists at finite *N*, at least when *N* is large.

## Keywords

1/N Expansion Chern-Simons Theories Duality in Gauge Field Theories## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]I.R. Klebanov and A.M. Polyakov,
*AdS dual of the critical O(N) vector model*,*Phys. Lett.***B 550**(2002) 213 [hep-th/0210114] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [2]E. Sezgin and P. Sundell,
*Massless higher spins and holography*,*Nucl. Phys.***B 644**(2002) 303 [*Erratum ibid.***B 660**(2003) 403] [hep-th/0205131] [INSPIRE]. - [3]S. Giombi and X. Yin,
*Higher Spin Gauge Theory and Holography: The Three-Point Functions*,*JHEP***09**(2010) 115 [arXiv:0912.3462] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [4]S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin,
*Chern-Simons Theory with Vector Fermion Matter*,*Eur. Phys. J.***C 72**(2012) 2112 [arXiv:1110.4386] [INSPIRE]. - [5]C.-M. Chang, S. Minwalla, T. Sharma and X. Yin,
*ABJ Triality: from Higher Spin Fields to Strings*,*J. Phys.***A 46**(2013) 214009 [arXiv:1207.4485] [INSPIRE]. - [6]S. Giombi,
*Higher Spin — CFT Duality*, in*Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015)*, Boulder, CO, U.S.A., June 1-26, 2015, pp. 137-214 (2017) [DOI: https://doi.org/10.1142/9789813149441_0003] [arXiv:1607.02967] [INSPIRE]. - [7]O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena,
*N*= 6*superconformal Chern-Simons-matter theories, M2-branes and their gravity duals*,*JHEP***10**(2008) 091 [arXiv:0806.1218] [INSPIRE]. - [8]J. Maldacena and A. Zhiboedov,
*Constraining Conformal Field Theories with A Higher Spin Symmetry*,*J. Phys.***A 46**(2013) 214011 [arXiv:1112.1016] [INSPIRE]. - [9]J. Maldacena and A. Zhiboedov,
*Constraining conformal field theories with a slightly broken higher spin symmetry*,*Class. Quant. Grav.***30**(2013) 104003 [arXiv:1204.3882] [INSPIRE]. - [10]D. Gaiotto and X. Yin,
*Notes on superconformal Chern-Simons-Matter theories*,*JHEP***08**(2007) 056 [arXiv:0704.3740] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [11]F. Benini, C. Closset and S. Cremonesi,
*Comments on*3*d Seiberg-like dualities*,*JHEP***10**(2011) 075 [arXiv:1108.5373] [INSPIRE]. - [12]J. Park and K.-J. Park,
*Seiberg-like Dualities for*3*d N*= 2*Theories with*SU(*N*)*gauge group*,*JHEP***10**(2013) 198 [arXiv:1305.6280] [INSPIRE]. - [13]O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3
*d dualities from*4*d dualities*,*JHEP***07**(2013) 149 [arXiv:1305.3924] [INSPIRE]. - [14]A. Giveon and D. Kutasov,
*Seiberg Duality in Chern-Simons Theory*,*Nucl. Phys.***B 812**(2009) 1 [arXiv:0808.0360] [INSPIRE]. - [15]S. Jain, S. Minwalla and S. Yokoyama,
*Chern Simons duality with a fundamental boson and fermion*,*JHEP***11**(2013) 037 [arXiv:1305.7235] [INSPIRE].CrossRefGoogle Scholar - [16]K. Inbasekar, S. Jain, S. Mazumdar, S. Minwalla, V. Umesh and S. Yokoyama,
*Unitarity, crossing symmetry and duality in the scattering of*\( \mathcal{N}=1 \)*SUSY matter Chern-Simons theories*,*JHEP***10**(2015) 176 [arXiv:1505.06571] [INSPIRE]. - [17]G. Gur-Ari and R. Yacoby,
*Three Dimensional Bosonization From Supersymmetry*,*JHEP***11**(2015) 013 [arXiv:1507.04378] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [18]A. Kapustin, B. Willett and I. Yaakov,
*Tests of Seiberg-like Duality in Three Dimensions*, arXiv:1012.4021 [INSPIRE]. - [19]B. Willett and I. Yaakov,
*N*= 2*Dualities and Z Extremization in Three Dimensions*, arXiv:1104.0487 [INSPIRE]. - [20]A. Kapustin,
*Seiberg-like duality in three dimensions for orthogonal gauge groups*, arXiv:1104.0466 [INSPIRE]. - [21]K. Intriligator and N. Seiberg,
*Aspects of*3*d N*= 2*Chern-Simons-Matter Theories*,*JHEP***07**(2013) 079 [arXiv:1305.1633] [INSPIRE]. - [22]O. Aharony, G. Gur-Ari and R. Yacoby,
*d*= 3*Bosonic Vector Models Coupled to Chern-Simons Gauge Theories*,*JHEP***03**(2012) 037 [arXiv:1110.4382] [INSPIRE]. - [23]D. Gaiotto, Z. Komargodski and N. Seiberg,
*Time-reversal breaking in QCD*_{4}*, walls and dualities in*2 + 1*dimensions*,*JHEP***01**(2018) 110 [arXiv:1708.06806] [INSPIRE]. - [24]J. Gomis, Z. Komargodski and N. Seiberg,
*Phases Of Adjoint QCD*_{3}*And Dualities*,*SciPost Phys.***5**(2018) 007 [arXiv:1710.03258] [INSPIRE]. - [25]D. Radičević,
*Disorder Operators in Chern-Simons-Fermion Theories*,*JHEP***03**(2016) 131 [arXiv:1511.01902] [INSPIRE].zbMATHGoogle Scholar - [26]O. Aharony,
*Baryons, monopoles and dualities in Chern-Simons-matter theories*,*JHEP***02**(2016) 093 [arXiv:1512.00161] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [27]O. Aharony, G. Gur-Ari and R. Yacoby,
*Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions*,*JHEP***12**(2012) 028 [arXiv:1207.4593] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [28]N. Seiberg, T. Senthil, C. Wang and E. Witten,
*A Duality Web in 2+1 Dimensions and Condensed Matter Physics*,*Annals Phys.***374**(2016) 395 [arXiv:1606.01989] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [29]G. Gur-Ari and R. Yacoby,
*Correlators of Large N Fermionic Chern-Simons Vector Models*,*JHEP***02**(2013) 150 [arXiv:1211.1866] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [30]A. Bedhotiya and S. Prakash,
*A test of bosonization at the level of four-point functions in Chern-Simons vector models*,*JHEP***12**(2015) 032 [arXiv:1506.05412] [INSPIRE].MathSciNetzbMATHGoogle Scholar - [31]S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S.R. Wadia and S. Yokoyama,
*Unitarity, Crossing Symmetry and Duality of the S-matrix in large N Chern-Simons theories with fundamental matter*,*JHEP***04**(2015) 129 [arXiv:1404.6373] [INSPIRE].CrossRefzbMATHGoogle Scholar - [32]Y. Dandekar, M. Mandlik and S. Minwalla,
*Poles in the S-Matrix of Relativistic Chern-Simons Matter theories from Quantum Mechanics*,*JHEP***04**(2015) 102 [arXiv:1407.1322] [INSPIRE].CrossRefGoogle Scholar - [33]S. Yokoyama,
*Scattering Amplitude and Bosonization Duality in General Chern-Simons Vector Models*,*JHEP***09**(2016) 105 [arXiv:1604.01897] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [34]S. Jain, S.P. Trivedi, S.R. Wadia and S. Yokoyama,
*Supersymmetric Chern-Simons Theories with Vector Matter*,*JHEP***10**(2012) 194 [arXiv:1207.4750] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [35]O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena and R. Yacoby,
*The Thermal Free Energy in Large N Chern-Simons-Matter Theories*,*JHEP***03**(2013) 121 [arXiv:1211.4843] [INSPIRE].CrossRefGoogle Scholar - [36]S. Jain, S. Minwalla, T. Sharma, T. Takimi, S.R. Wadia and S. Yokoyama,
*Phases of large N vector Chern-Simons theories on S*^{2}×*S*^{1},*JHEP***09**(2013) 009 [arXiv:1301.6169] [INSPIRE]. - [37]T. Takimi,
*Duality and higher temperature phases of large N Chern-Simons matter theories on S*^{2}×*S*^{1},*JHEP***07**(2013) 177 [arXiv:1304.3725] [INSPIRE]. - [38]S. Yokoyama,
*A Note on Large N Thermal Free Energy in Supersymmetric Chern-Simons Vector Models*,*JHEP***01**(2014) 148 [arXiv:1310.0902] [INSPIRE].CrossRefzbMATHGoogle Scholar - [39]S. Yokoyama,
*Chern-Simons-Fermion Vector Model with Chemical Potential*,*JHEP***01**(2013) 052 [arXiv:1210.4109] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [40]A. Karch and D. Tong,
*Particle-Vortex Duality from*3*d Bosonization*,*Phys. Rev.***X 6**(2016) 031043 [arXiv:1606.01893] [INSPIRE]. - [41]R.D. Pisarski,
*Fixed point structure of*\( \phi \)^{6}*in three-dimensions AT Large N*,*Phys. Rev. Lett.***48**(1982) 574 [INSPIRE]. - [42]E. Pomoni and L. Rastelli,
*Large N Field Theory and AdS Tachyons*,*JHEP***04**(2009) 020 [arXiv:0805.2261] [INSPIRE].MathSciNetCrossRefGoogle Scholar - [43]
- [44]S. Minwalla and S. Yokoyama,
*Chern Simons Bosonization along RG Flows*,*JHEP***02**(2016) 103 [arXiv:1507.04546] [INSPIRE].CrossRefGoogle Scholar - [45]A. Dey, I. Halder, S. Jain, L. Janagal, S. Minwalla and N. Prabhakar,
*Regular Boson Critical Fermion Chern-Simons dualities in the Higgsed Phase*, to appear.Google Scholar - [46]P.-S. Hsin and N. Seiberg,
*Level/rank Duality and Chern-Simons-Matter Theories*,*JHEP***09**(2016) 095 [arXiv:1607.07457] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [47]W. Siegel,
*Supersymmetric Dimensional Regularization via Dimensional Reduction*,*Phys. Lett.***B 84**(1979) 193 [INSPIRE]. - [48]A.N. Vasiliev, Yu.M. Pismak and Yu.R. Khonkonen, 1
*/N Expansion: calculation of the exponent η in the order*1*/N*^{3}*by the conformal bootstrap method*,*Theor. Math. Phys.***50**(1982) 127 [INSPIRE]. - [49]A. Bzowski, P. McFadden and K. Skenderis,
*Implications of conformal invariance in momentum space*,*JHEP***03**(2014) 111 [arXiv:1304.7760] [INSPIRE].CrossRefzbMATHGoogle Scholar - [50]G.J. Turiaci and A. Zhiboedov,
*Veneziano Amplitude of Vasiliev Theory*,*JHEP***10**(2018) 034 [arXiv:1802.04390] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [51]O. Aharony, L.F. Alday, A. Bissi and R. Yacoby,
*The Analytic Bootstrap for Large N Chern-Simons Vector Models*,*JHEP***08**(2018) 166 [arXiv:1805.04377] [INSPIRE].MathSciNetzbMATHGoogle Scholar - [52]S. Giombi, V. Gurucharan, V. Kirilin, S. Prakash and E. Skvortsov,
*On the Higher-Spin Spectrum in Large N Chern-Simons Vector Models*,*JHEP***01**(2017) 058 [arXiv:1610.08472] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [53]O. Aharony, F. Benini, P.-S. Hsin and N. Seiberg,
*Chern-Simons-matter dualities with*SO*and*USp*gauge groups*,*JHEP***02**(2017) 072 [arXiv:1611.07874] [INSPIRE]. - [54]S. Choudhury et al.,
*Bose-Fermi Chern-Simons Dualities in the Higgsed Phase*,*JHEP***11**(2018) 177 [arXiv:1804.08635] [INSPIRE]. - [55]S. Giombi, V. Kirilin and E. Skvortsov,
*Notes on Spinning Operators in Fermionic CFT*,*JHEP***05**(2017) 041 [arXiv:1701.06997] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [56]L.V. Avdeev, D.I. Kazakov and I.N. Kondrashuk,
*Renormalizations in supersymmetric and nonsupersymmetric nonAbelian Chern-Simons field theories with matter*,*Nucl. Phys.***B 391**(1993) 333 [INSPIRE]. - [57]F. Benini,
*Three-dimensional dualities with bosons and fermions*,*JHEP***02**(2018) 068 [arXiv:1712.00020] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [58]K. Jensen,
*A master bosonization duality*,*JHEP***01**(2018) 031 [arXiv:1712.04933] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [59]E. Witten,
*Multitrace operators, boundary conditions and AdS/CFT correspondence*, hep-th/0112258 [INSPIRE]. - [60]S. Grozdanov,
*Wilsonian Renormalisation and the Exact Cut-Off Scale from Holographic Duality*,*JHEP***06**(2012) 079 [arXiv:1112.3356] [INSPIRE].CrossRefGoogle Scholar - [61]D. Das, S.R. Das and G. Mandal,
*Double Trace Flows and Holographic RG in dS/CFT correspondence*,*JHEP***11**(2013) 186 [arXiv:1306.0336] [INSPIRE].CrossRefGoogle Scholar - [62]O. Aharony, G. Gur-Ari and N. Klinghoffer,
*The Holographic Dictionary for β-functions of Multi-trace Coupling Constants*,*JHEP***05**(2015) 031 [arXiv:1501.06664] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [63]A. Kapustin and B. Willett,
*Wilson loops in supersymmetric Chern-Simons-matter theories and duality*, arXiv:1302.2164 [INSPIRE]. - [64]O. Aharony and D. Fleischer,
*IR Dualities in General*3*d Supersymmetric*SU(*N*)*QCD Theories*,*JHEP***02**(2015) 162 [arXiv:1411.5475] [INSPIRE]. - [65]S.G. Naculich, H.A. Riggs and H.J. Schnitzer,
*Group Level Duality in WZW Models and Chern-Simons Theory*,*Phys. Lett.***B 246**(1990) 417 [INSPIRE]. - [66]M. Camperi, F. Levstein and G. Zemba,
*The Large N Limit of Chern-Simons Gauge Theory*,*Phys. Lett.***B 247**(1990) 549 [INSPIRE]. - [67]T. Nakanishi and A. Tsuchiya,
*Level rank duality of WZW models in conformal field theory*,*Commun. Math. Phys.***144**(1992) 351 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [68]S.G. Naculich and H.J. Schnitzer,
*Level-rank duality of the*U(*N*)*WZW model, Chern-Simons theory and 2-D qYM theory*,*JHEP***06**(2007) 023 [hep-th/0703089] [INSPIRE].