Journal of High Energy Physics

, 2018:54 | Cite as

A simple approach towards the sign problem using path optimisation

  • Francis Bursa
  • Michael KroyterEmail author
Open Access
Regular Article - Theoretical Physics


We suggest an approach for simulating theories with a sign problem that relies on optimisation of complex integration contours that are not restricted to lie along Lefschetz thimbles. To that end we consider the toy model of a one-dimensional Bose gas with chemical potential. We identify the main contribution to the sign problem in this case as coming from a nearest neighbour interaction and approximately cancel it by an explicit deformation of the integration contour. We extend the obtained expressions to more general ones, depending on a small set of parameters. We find the optimal values of these parameters on a small lattice and study their range of validity. We also identify precursors for the onset of the sign problem. A fast method of evaluating the Jacobian related to the contour deformation is proposed and its numerical stability is examined. For a particular choice of lattice parameters, we find that our approach increases the lattice size at which the sign problem becomes serious from L ≈ 32 to L ≈ 700. The efficient evaluation of the Jacobian (O(L) for a sweep) results in running times that are of the order of a few minutes on a standard laptop.


Lattice field theory simulation 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P. de Forcrand, Simulating QCD at finite density, PoS(LAT2009)010 (2009) [arXiv:1005.0539] [INSPIRE].
  2. [2]
    G. Aarts, Introductory lectures on lattice QCD at nonzero baryon number, J. Phys. Conf. Ser. 706 (2016) 022004 [arXiv:1512.05145] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    L. Medina and M.C. Ogilvie, Simulation of scalar field theories with complex actions, arXiv:1712.02842 [INSPIRE].
  4. [4]
    C.M. Bender and S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80 (1998) 5243 [physics/9712001] [INSPIRE].
  5. [5]
    C.M. Bender, Making sense of non-Hermitian Hamiltonians, Rept. Prog. Phys. 70 (2007) 947 [hep-th/0703096] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    F. Bursa and M. Kroyter, Lattice string field theory: The linear dilaton in one dimension, JHEP 10 (2014) 74 [arXiv:1405.5089] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    E. Witten, Noncommutative geometry and string field theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (1953) 1087 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R.V. Gavai and S. Gupta, Pressure and nonlinear susceptibilities in QCD at finite chemical potentials, Phys. Rev. D 68 (2003) 034506 [hep-lat/0303013] [INSPIRE].
  10. [10]
    P. de Forcrand and O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential, Nucl. Phys. B 642 (2002) 290 [hep-lat/0205016] [INSPIRE].
  11. [11]
    M. D’Elia and M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys. Rev. D 67 (2003) 014505 [hep-lat/0209146] [INSPIRE].
  12. [12]
    G. Aarts, Complex Langevin dynamics and other approaches at finite chemical potential, PoS(LATTICE2012)017 (2012) [arXiv:1302.3028] [INSPIRE].
  13. [13]
    G. Aarts, E. Seiler and I.-O. Stamatescu, The Complex Langevin method: When can it be trusted?, Phys. Rev. D 81 (2010) 054508 [arXiv:0912.3360] [INSPIRE].ADSGoogle Scholar
  14. [14]
    G. Aarts, F.A. James, E. Seiler and I.-O. Stamatescu, Complex Langevin: etiology and diagnostics of its main problem, Eur. Phys. J. C 71 (2011) 1756 [arXiv:1101.3270] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    K. Nagata, J. Nishimura and S. Shimasaki, Argument for justification of the complex Langevin method and the condition for correct convergence, Phys. Rev. D 94 (2016) 114515 [arXiv:1606.07627] [INSPIRE].ADSGoogle Scholar
  16. [16]
    G. Guralnik and Z. Guralnik, Complexified path integrals and the phases of quantum field theory, Annals Phys. 325 (2010) 2486 [arXiv:0710.1256] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    E. Witten, Analytic continuation of Chern-Simons theory, AMS/IP Stud. Adv. Math. 50 (2011) 347 [arXiv:1001.2933] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    AuroraScience collaboration, M. Cristoforetti et al., New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble, Phys. Rev. D 86 (2012) 074506 [arXiv:1205.3996] [INSPIRE].
  19. [19]
    A. Alexandru, G. Ba¸sar, P.F. Bedaque, G.W. Ridgway and N.C. Warrington, Fast estimator of Jacobians in the Monte Carlo integration on Lefschetz thimbles, Phys. Rev. D 93 (2016) 094514 [arXiv:1604.00956] [INSPIRE].
  20. [20]
    A. Alexandru, G. Ba¸sar and P. Bedaque, Monte Carlo algorithm for simulating fermions on Lefschetz thimbles, Phys. Rev. D 93 (2016) 014504 [arXiv:1510.03258] [INSPIRE].
  21. [21]
    A. Alexandru, G. Ba¸sar, P.F. Bedaque, G.W. Ridgway and N.C. Warrington, Monte Carlo calculations of the finite density Thirring model, Phys. Rev. D 95 (2017) 014502 [arXiv:1609.01730] [INSPIRE].
  22. [22]
    P.F. Bedaque, A complex path around the sign problem, EPJ Web Conf. 175 (2018) 01020 [arXiv:1711.05868] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    G. Aarts, Can stochastic quantization evade the sign problem? The relativistic Bose gas at finite chemical potential, Phys. Rev. Lett. 102 (2009) 131601 [arXiv:0810.2089] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Y. Mori, K. Kashiwa and A. Ohnishi, Toward solving the sign problem with path optimization method, Phys. Rev. D 96 (2017) 111501 [arXiv:1705.05605] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    Y. Mori, K. Kashiwa and A. Ohnishi, Application of a neural network to the sign problem via the path optimization method, PTEP 2018 (2018) 023B04 [arXiv:1709.03208] [INSPIRE].
  26. [26]
    A. Alexandru, P.F. Bedaque, H. Lamm and S. Lawrence, Finite-density Monte Carlo calculations on sign-optimized manifolds, Phys. Rev. D 97 (2018) 094510 [arXiv:1804.00697] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Alexandru, P.F. Bedaque, H. Lamm, S. Lawrence and N.C. Warrington, Fermions at finite density in 2+1 dimensions with sign-optimized Manifolds, Phys. Rev. Lett. 121 (2018) 191602 [arXiv:1808.09799] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Lawrence, Beyond thimbles: sign-optimized manifolds for finite density, in 36th International Symposium on Lattice Field Theory (Lattice 2018), East Lansing, MI, U.S.A., July 22–28, 2018 (2018) [arXiv:1810.06529] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of GlasgowGlasgowUnited Kingdom
  2. 2.Department of SciencesHolon Institute of Technology (HIT)HolonIsrael

Personalised recommendations