Advertisement

Journal of High Energy Physics

, 2018:53 | Cite as

Exotic branes in Exceptional Field Theory: E7(7) and beyond

  • David S. BermanEmail author
  • Edvard T. Musaev
  • Ray Otsuki
Open Access
Regular Article - Theoretical Physics

Abstract

In recent years, it has been widely argued that the duality transformations of string and M-theory naturally imply the existence of so-called ‘exotic branes’ — low codimension objects with highly non-perturbative tensions, scaling as g s α for α ≤ −3. We argue that their intimate link with these duality transformations make them an ideal object of study using the general framework of Double Field Theory (DFT) and Exceptional Field Theory (EFT) — collectively referred to as ExFT. Parallel to the theme of dualities, we also stress that these theories unify known solutions in string- and M-theory into a single solution under ExFT. We argue that not only is there a natural unifying description of the lowest codimension objects, many of these exotic states require this formalism as a consistent supergravity description does not exist.

Keywords

M-Theory p-branes Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N.A. Obers and B. Pioline, U duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J. de Boer and M. Shigemori, Exotic Branes in String Theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    E.A. Bergshoeff, T. Ortín and F. Riccioni, Defect Branes, Nucl. Phys. B 856 (2012) 210 [arXiv:1109.4484] [INSPIRE].
  5. [5]
    E.A. Bergshoeff, A. Marrani and F. Riccioni, Brane orbits, Nucl. Phys. B 861 (2012) 104 [arXiv:1201.5819] [INSPIRE].
  6. [6]
    E.A. Bergshoeff, A. Kleinschmidt and F. Riccioni, Supersymmetric Domain Walls, Phys. Rev. D 86 (2012) 085043 [arXiv:1206.5697] [INSPIRE].
  7. [7]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].
  8. [8]
    C.M. Hull, Doubled Geometry and T-Folds, JHEP 07 (2007) 080 [hep-th/0605149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    R.d. Sorkin, Kaluza-Klein Monopole, Phys. Rev. Lett. 51 (1983) 87 [INSPIRE].
  10. [10]
    D.J. Gross and M.J. Perry, Magnetic Monopoles in Kaluza-Klein Theories, Nucl. Phys. B 226 (1983) 29 [INSPIRE].
  11. [11]
    D.S. Berman and F.J. Rudolph, Strings, Branes and the Self-dual Solutions of Exceptional Field Theory, JHEP 05 (2015) 130 [arXiv:1412.2768] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    J. Berkeley, D.S. Berman and F.J. Rudolph, Strings and Branes are Waves, JHEP 06 (2014) 006 [arXiv:1403.7198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    D.S. Berman and F.J. Rudolph, Branes are Waves and Monopoles, JHEP 05 (2015) 015 [arXiv:1409.6314] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Y. Sakatani, Exotic branes and non-geometric fluxes, JHEP 03 (2015) 135 [arXiv:1412.8769] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    E.A. Bergshoeff, V.A. Penas, F. Riccioni and S. Risoli, Non-geometric fluxes and mixed-symmetry potentials, JHEP 11 (2015) 020 [arXiv:1508.00780] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    I. Bakhmatov, A. Kleinschmidt and E.T. Musaev, Non-geometric branes are DFT monopoles, JHEP 10 (2016) 076 [arXiv:1607.05450] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    E.A. Bergshoeff, O. Hohm, V.A. Penas and F. Riccioni, Dual Double Field Theory, JHEP 06 (2016) 026 [arXiv:1603.07380] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    D.M. Lombardo, F. Riccioni and S. Risoli, P fluxes and exotic branes, JHEP 12 (2016) 114 [arXiv:1610.07975] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    I. Bakhmatov, D. Berman, A. Kleinschmidt, E. Musaev and R. Otsuki, Exotic branes in Exceptional Field Theory: the SL(5) duality group, JHEP 08 (2018) 021 [arXiv:1710.09740] [INSPIRE].
  20. [20]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].
  21. [21]
    P.C. West, E 11 , SL(32) and central charges, Phys. Lett. B 575 (2003) 333 [hep-th/0307098] [INSPIRE].
  22. [22]
    P.C. West, E 11 origin of brane charges and U-duality multiplets, JHEP 08 (2004) 052 [hep-th/0406150] [INSPIRE].
  23. [23]
    P.C. West, Brane dynamics, central charges and E 11, JHEP 03 (2005) 077 [hep-th/0412336] [INSPIRE].
  24. [24]
    P.P. Cook and P.C. West, Charge multiplets and masses for E 11, JHEP 11 (2008) 091 [arXiv:0805.4451] [INSPIRE].
  25. [25]
    P.P. Cook, Exotic E 11 branes as composite gravitational solutions, Class. Quant. Grav. 26 (2009) 235023 [arXiv:0908.0485] [INSPIRE].
  26. [26]
    A.G. Tumanov and P. West, E 11 must be a symmetry of strings and branes, Phys. Lett. B 759 (2016) 663 [arXiv:1512.01644] [INSPIRE].
  27. [27]
    D.M. Lombardo, F. Riccioni and S. Risoli, Non-geometric fluxes & tadpole conditions for exotic branes, JHEP 10 (2017) 134 [arXiv:1704.08566] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    E.A. Bergshoeff and F. Riccioni, Wrapping rules (in) string theory, JHEP 01 (2018) 046 [arXiv:1710.00642] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Kleinschmidt, Counting supersymmetric branes, JHEP 10 (2011) 144 [arXiv:1109.2025] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    T. Kimura and S. Sasaki, Worldsheet instanton corrections to 522 -brane geometry, JHEP 08 (2013) 126 [arXiv:1305.4439] [INSPIRE].
  31. [31]
    T. Kimura, S. Sasaki and K. Shiozawa, Worldsheet Instanton Corrections to Five-branes and Waves in Double Field Theory, JHEP 07 (2018) 001 [arXiv:1803.11087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    A. Chatzistavrakidis, F.F. Gautason, G. Moutsopoulos and M. Zagermann, Effective actions of nongeometric five-branes, Phys. Rev. D 89 (2014) 066004 [arXiv:1309.2653] [INSPIRE].
  33. [33]
    T. Kimura, S. Sasaki and M. Yata, World-volume Effective Actions of Exotic Five-branes, JHEP 07 (2014) 127 [arXiv:1404.5442] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    T. Kimura, S. Sasaki and M. Yata, World-volume Effective Action of Exotic Five-brane in M-theory, JHEP 02 (2016) 168 [arXiv:1601.05589] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    K. Lee, S.-J. Rey and Y. Sakatani, Effective action for non-geometric fluxes duality covariant actions, JHEP 07 (2017) 075 [arXiv:1612.08738] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    Y. Sakatani and S. Uehara, Connecting M-theory and type IIB parameterizations in Exceptional Field Theory, PTEP 2017 (2017) 043B05 [arXiv:1701.07819] [INSPIRE].
  37. [37]
    D. Andriot and A. Betz, NS-branes, source corrected Bianchi identities and more on backgrounds with non-geometric fluxes, JHEP 07 (2014) 059 [arXiv:1402.5972] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    F. Hassler and D. Lüst, Non-commutative/non-associative IIA (IIB) Q- and R-branes and their intersections, JHEP 07 (2013) 048 [arXiv:1303.1413] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].
  40. [40]
    C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    C.M. Hull, Generalised Geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    P. Pires Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    C. Hillmann, Generalized E(7(7)) coset dynamics and D = 11 supergravity, JHEP 03 (2009) 135 [arXiv:0901.1581] [INSPIRE].
  44. [44]
    D.S. Berman and M.J. Perry, Generalized Geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised Geometry I: Type II Theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) × ℝ+ generalised geometry, connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].
  47. [47]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised Geometry II: E d(d) × ℝ+ and M-theory, JHEP 03 (2014) 019 [arXiv:1212.1586] [INSPIRE].
  48. [48]
    G. Aldazabal, D. Marques and C. Núñez, Double Field Theory: A Pedagogical Review, Class. Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    D. Geissbuhler, D. Marques, C. Núñez and V. Penas, Exploring Double Field Theory, JHEP 06 (2013) 101 [arXiv:1304.1472] [INSPIRE].
  50. [50]
    D.S. Berman and D.C. Thompson, Duality Symmetric String and M-theory, Phys. Rept. 566 (2014) 1 [arXiv:1306.2643] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    O. Hohm and H. Samtleben, Exceptional field theory. III. E 8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].
  52. [52]
    O. Hohm and H. Samtleben, Exceptional field theory. II. E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].
  53. [53]
    O. Hohm and H. Samtleben, Exceptional Field Theory I: E 6(6) covariant Form of M-theory and Type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].
  54. [54]
    A. Abzalov, I. Bakhmatov and E.T. Musaev, Exceptional field theory: SO(5, 5), JHEP 06 (2015) 088 [arXiv:1504.01523] [INSPIRE].
  55. [55]
    E.T. Musaev, Exceptional field theory: SL(5), JHEP 02 (2016) 012 [arXiv:1512.02163] [INSPIRE].
  56. [56]
    O. Hohm and Y.-N. Wang, Tensor hierarchy and generalized Cartan calculus in SL(3) × SL(2) exceptional field theory, JHEP 04 (2015) 050 [arXiv:1501.01600] [INSPIRE].
  57. [57]
    D.S. Berman, C.D.A. Blair, E. Malek and F.J. Rudolph, An action for F-theory: SL(2)ℝ+ exceptional field theory, Class. Quant. Grav. 33 (2016) 195009 [arXiv:1512.06115] [INSPIRE].
  58. [58]
    O. Hohm, D. Lüst and B. Zwiebach, The Spacetime of Double Field Theory: Review, Remarks and Outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality Invariant Actions and Generalised Geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    E. Malek, U-duality in three and four dimensions, Int. J. Mod. Phys. A 32 (2017) 1750169 [arXiv:1205.6403] [INSPIRE].
  61. [61]
    C.D.A. Blair, E. Malek and J.-H. Park, M-theory and Type IIB from a Duality Manifest Action, JHEP 01 (2014) 172 [arXiv:1311.5109] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    C.D.A. Blair and E. Malek, Geometry and fluxes of SL(5) exceptional field theory, JHEP 03 (2015) 144 [arXiv:1412.0635] [INSPIRE].
  63. [63]
    J.-H. Park and Y. Suh, U-geometry: SL(5), JHEP 04 (2013) 147 [Erratum ibid. 11 (2013) 210] [arXiv:1302.1652] [INSPIRE].
  64. [64]
    A. Le Diffon and H. Samtleben, Supergravities without an Action: Gauging the Trombone, Nucl. Phys. B 811 (2009) 1 [arXiv:0809.5180] [INSPIRE].
  65. [65]
    G. Aldazabal, M. Graña, D. Marqués and J.A. Rosabal, Extended geometry and gauged maximal supergravity, JHEP 06 (2013) 046 [arXiv:1302.5419] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    A. Le Diffon, H. Samtleben and M. Trigiante, N = 8 Supergravity with Local Scaling Symmetry, JHEP 04 (2011) 079 [arXiv:1103.2785] [INSPIRE].
  68. [68]
    C.D.A. Blair, Doubled strings, negative strings and null waves, JHEP 11 (2016) 042 [arXiv:1608.06818] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    D. Tong, NS5-branes, T duality and world sheet instantons, JHEP 07 (2002) 013 [hep-th/0204186] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J.A. Harvey and S. Jensen, Worldsheet instanton corrections to the Kaluza-Klein monopole, JHEP 10 (2005) 028 [hep-th/0507204] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    T. Kimura and S. Sasaki, Gauged Linear σ-model for Exotic Five-brane, Nucl. Phys. B 876 (2013) 493 [arXiv:1304.4061] [INSPIRE].
  72. [72]
    D. Lüst, E. Plauschinn and V. Vall Camell, Unwinding strings in semi-flatland, JHEP 07 (2017) 027 [arXiv:1706.00835] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    E. Lozano-Tellechea and T. Ortín, 7-branes and higher Kaluza-Klein branes, Nucl. Phys. B 607 (2001) 213 [hep-th/0012051] [INSPIRE].
  74. [74]
    C.M. Hull, Gravitational duality, branes and charges, Nucl. Phys. Proc. Suppl. 62 (1998) 412 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    E. Bergshoeff and J.P. van der Schaar, On M nine-branes, Class. Quant. Grav. 16 (1999) 23 [hep-th/9806069] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  76. [76]
    T. Ortin, Gravity and Strings, Cambridge Monographs on Mathematical Physics. Cambridge University Press (2015) [INSPIRE].
  77. [77]
    J.J. Fernández-Melgarejo, T. Kimura and Y. Sakatani, Weaving the Exotic Web, JHEP 09 (2018) 072 [arXiv:1805.12117] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    A.G. Tumanov and P. West, E11 in 11D, Phys. Lett. B 758 (2016) 278 [arXiv:1601.03974] [INSPIRE].
  79. [79]
    A. Kleinschmidt and P.C. West, Representations of G+++ and the role of space-time, JHEP 02 (2004) 033 [hep-th/0312247] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    P.P. Cook, Bound States of String Theory and Beyond, JHEP 03 (2012) 028 [arXiv:1109.6595] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • David S. Berman
    • 1
    Email author
  • Edvard T. Musaev
    • 2
    • 3
  • Ray Otsuki
    • 1
  1. 1.Queen Mary University of London, Centre for Research in String Theory, School of Physics and AstronomyLondonEngland
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  3. 3.Kazan Federal University, Institute of PhysicsKazanRussia

Personalised recommendations