Advertisement

Journal of High Energy Physics

, 2018:47 | Cite as

All Killing superalgebras for warped AdS backgrounds

  • S. Beck
  • U. GranEmail author
  • J. Gutowski
  • G. Papadopoulos
Open Access
Regular Article - Theoretical Physics

Abstract

We present all the symmetry superalgebras \( \mathfrak{g} \) of all warped AdSk ×wMdk, k > 2, flux backgrounds in d = 10, 11 dimensions preserving any number of supersymmetries. First we give the conditions for g to decompose into a direct sum of the isometry algebra of AdSk and that of the internal space Mdk. Assuming this decomposition, we identify all symmetry superalgebras of AdS3 backgrounds by showing that the isometry groups of internal spaces act transitively on spheres. We demonstrate that in type II and d = 11 theories the AdS3 symmetry superalgebras may not be simple and also present all symmetry superalgebras of heterotic AdS3 backgrounds. Furthermore, we explicitly give the symmetry superalgebras of AdSk, k > 3, backgrounds and prove that they are all classical.

Keywords

Flux compactifications Space-Time Symmetries Supergravity Models Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V.G. Kac, A Sketch of Lie Superalgebra Theory, Commun. Math. Phys. 53 (1977) 31 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Strominger, AdS 2 quantum gravity and string theory, JHEP 01 (1999) 007 [hep-th/9809027] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    U. Gran, J.B. Gutowski and G. Papadopoulos, On supersymmetric Anti-de-Sitter, de-Sitter and Minkowski flux backgrounds, Class. Quant. Grav. 35 (2018) 065016 [arXiv:1607.00191] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R. D’Auria and P. Fré, Spontaneous Generation of Osp(4/8) Symmetry in the Spontaneous Compactification of D = 11 Supergravity, Phys. Lett. B 121 (1983) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    B.S. Acharya, J.M. Figueroa-O’Farrill, C.M. Hull and B.J. Spence, Branes at conical singularities and holography, Adv. Theor. Math. Phys. 2 (1999) 1249 [hep-th/9808014] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J.P. Gauntlett, R.C. Myers and P.K. Townsend, Supersymmetry of rotating branes, Phys. Rev. D 59 (1998) 025001 [hep-th/9809065] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    M. Blau, J.M. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, A New maximally supersymmetric background of IIB superstring theory, JHEP 01 (2002) 047 [hep-th/0110242] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    J.M. Figueroa-O’Farrill, On the supersymmetries of Anti-de Sitter vacua, Class. Quant. Grav. 16 (1999) 2043 [hep-th/9902066] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    D. Montgomery and H. Samelson, Transformation groups of spheres, Ann. Math. 44 (1943) 454.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J. Simons, On the transitivity of holonomy systems, Ann. Math. 76 (1962) 213.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    J.B. Gutowski and G. Papadopoulos, Supersymmetry of AdS and flat backgrounds in M-theory, JHEP 02 (2015) 145 [arXiv:1407.5652] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S.W. Beck, J.B. Gutowski and G. Papadopoulos, Supersymmetry of AdS and flat IIB backgrounds, JHEP 02 (2015) 020 [arXiv:1410.3431] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    S. Beck, J.B. Gutowski and G. Papadopoulos, Supersymmetry of IIA warped flux AdS and flat backgrounds, JHEP 09 (2015) 135 [arXiv:1501.07620] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J.M. Figueroa-O’Farrill, P. Meessen and S. Philip, Supersymmetry and homogeneity of M-theory backgrounds, Class. Quant. Grav. 22 (2005) 207 [hep-th/0409170] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    J.M. Figueroa-O’Farrill, E. Hackett-Jones and G. Moutsopoulos, The Killing superalgebra of ten-dimensional supergravity backgrounds, Class. Quant. Grav. 24 (2007) 3291 [hep-th/0703192] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S.W. Beck, J.B. Gutowski and G. Papadopoulos, Geometry and supersymmetry of heterotic warped flux AdS backgrounds, JHEP 07 (2015) 152 [arXiv:1505.01693] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J.M. Figueroa-O’Farrill and G. Papadopoulos, Maximally supersymmetric solutions of ten-dimensional and eleven-dimensional supergravities, JHEP 03 (2003) 048 [hep-th/0211089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    J. Figueroa-O’Farrill and N. Hustler, The homogeneity theorem for supergravity backgrounds, JHEP 10 (2012) 014 [arXiv:1208.0553] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A.S. Haupt, S. Lautz and G. Papadopoulos, AdS 4 backgrounds with N > 16 supersymmetries in 10 and 11 dimensions, JHEP 01 (2018) 087 [arXiv:1711.08280] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    S.W. Beck, J.B. Gutowski and G. Papadopoulos, AdS 5 backgrounds with 24 supersymmetries, JHEP 06 (2016) 126 [arXiv:1601.06645] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    E. D’Hoker, M. Gutperle, A. Karch and C.F. Uhlemann, Warped AdS 6 × S 2 in Type IIB supergravity I: Local solutions, JHEP 08 (2016) 046 [arXiv:1606.01254] [INSPIRE].CrossRefzbMATHGoogle Scholar
  24. [24]
    J. Gutowski and G. Papadopoulos, On supersymmetric AdS 6 solutions in 10 and 11 dimensions, JHEP 12 (2017) 009 [arXiv:1702.06048] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    U. Gran, G. Papadopoulos and C. von Schultz, Supersymmetric geometries of IIA supergravity I, JHEP 05 (2014) 024 [arXiv:1401.6900] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    U. Gran, GAMMA: A Mathematica package for performing gamma matrix algebra and Fierz transformations in arbitrary dimensions, hep-th/0105086 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • S. Beck
    • 1
  • U. Gran
    • 2
    Email author
  • J. Gutowski
    • 3
  • G. Papadopoulos
    • 1
  1. 1.Department of MathematicsKing’s College LondonLondonU.K.
  2. 2.Department of Physics, Division for Theoretical PhysicsChalmers University of TechnologyGöteborgSweden
  3. 3.Department of MathematicsUniversity of SurreyGuildfordU.K.

Personalised recommendations