Journal of High Energy Physics

, 2018:46 | Cite as

Determinantal Calabi-Yau varieties in Grassmannians and the Givental I-functions

  • Yoshinori Honma
  • Masahide ManabeEmail author
Open Access
Regular Article - Theoretical Physics


We examine a class of Calabi-Yau varieties of the determinantal type in Grassmannians and clarify what kind of examples can be constructed explicitly. We also demonstrate how to compute their genus-0 Gromov-Witten invariants from the analysis of the Givental I-functions. By constructing I-functions from the supersymmetric localization formula for the two dimensional gauged linear sigma models, we describe an algorithm to evaluate the genus-0 A-model correlation functions appropriately. We also check that our results for the Gromov-Witten invariants are consistent with previous results for known examples included in our construction.


Topological Strings Differential and Algebraic Geometry Sigma Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum Configurations for Superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].
  2. [2]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].
  3. [3]
    D.R. Morrison and M.R. Plesser, Summing the instantons: Quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys. B 440 (1995) 279 [hep-th/9412236] [INSPIRE].
  4. [4]
    K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].
  5. [5]
    W. Gu and E. Sharpe, A proposal for nonabelian mirrors, arXiv:1806.04678 [INSPIRE].
  6. [6]
    Z. Chen, W. Gu, H. Parsian and E. Sharpe, Two-dimensional supersymmetric gauge theories with exceptional gauge groups, arXiv:1808.04070 [INSPIRE].
  7. [7]
    V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE].
  8. [8]
    F. Benini and S. Cremonesi, Partition Functions of \( \mathcal{N}=\left(2,2\right) \) Gauge Theories on S 2 and Vortices, Commun. Math. Phys. 334 (2015) 1483 [arXiv:1206.2356] [INSPIRE].
  9. [9]
    N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact Results in D = 2 Supersymmetric Gauge Theories, JHEP 05 (2013) 093 [arXiv:1206.2606] [INSPIRE].
  10. [10]
    H. Jockers, V. Kumar, J.M. Lapan, D.R. Morrison and M. Romo, Two-Sphere Partition Functions and Gromov-Witten Invariants, Commun. Math. Phys. 325 (2014) 1139 [arXiv:1208.6244] [INSPIRE].
  11. [11]
    Y. Honma and M. Manabe, Exact Kähler Potential for Calabi-Yau Fourfolds, JHEP 05 (2013) 102 [arXiv:1302.3760] [INSPIRE].
  12. [12]
    C. Closset, S. Cremonesi and D.S. Park, The equivariant A-twist and gauged linear σ-models on the two-sphere, JHEP 06 (2015) 076 [arXiv:1504.06308] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional supersymmetric theories, JHEP 07 (2015) 127 [arXiv:1504.03698] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    K. Ueda and Y. Yoshida, Equivariant A-twisted GLSM and Gromov-Witten invariants of CY 3-folds in Grassmannians, JHEP 09 (2017) 128 [arXiv:1602.02487] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    B. Kim, J. Oh, K. Ueda and Y. Yoshida, Residue mirror symmetry for Grassmannians, arXiv:1607.08317 [INSPIRE].
  16. [16]
    A. Gerhardus, H. Jockers and U. Ninad, The Geometry of Gauged Linear σ-model Correlation Functions, Nucl. Phys. B 933 (2018) 65 [arXiv:1803.10253] [INSPIRE].
  17. [17]
    Y. Honma and M. Manabe, Local B-model Yukawa couplings from A-twisted correlators, PTEP 2018 (2018) 073A03 [arXiv:1805.02661] [INSPIRE].
  18. [18]
    H. Jockers, V. Kumar, J.M. Lapan, D.R. Morrison and M. Romo, Nonabelian 2D Gauge Theories for Determinantal Calabi-Yau Varieties, JHEP 11 (2012) 166 [arXiv:1205.3192] [INSPIRE].
  19. [19]
    J. Harris, Graduate Texts in Mathematics. Vol. 133: Algebraic geometry, Springer-Verlag, New York U.S.A. (1992).Google Scholar
  20. [20]
    W. Fulton, Ergeb. Math. Grenzgeb. (3). Vol. 2: Intersection theory, second edition, Springer-Verlag, Berlin Germany (1998).Google Scholar
  21. [21]
    A. Givental, Homological geometry I. Projective hypersurfaces, Selecta Math. 1 (1995) 325.Google Scholar
  22. [22]
    A. Givental, Equivariant Gromov-Witten Invariants, alg-geom/9603021.
  23. [23]
    T. Coates and A. Givental, Quantum Riemann-Roch, Lefschetz and Serre, Ann. Math. 165 (2007) 15 [math/0110142] [INSPIRE].
  24. [24]
    S. Hosono and H. Takagi, Mirror symmetry and projective geometry of Reye congruences I, J. Alg. Geom. 23 (2014) 279 [arXiv:1101.2746] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    M.-A. Bertin, Examples of Calabi-Yau 3-folds of7 with ρ = 1, Canad. J. Math. 61 (2009) 1050 [math/0701511].
  26. [26]
    D.A. Cox and S. Katz, Mathematical surveys and monographs. Vol. 68: Mirror symmetry and algebraic geometry, AMS, New York U.S.A. (1999).Google Scholar
  27. [27]
    G. Bonelli, A. Sciarappa, A. Tanzini and P. Vasko, Vortex partition functions, wall crossing and equivariant Gromov-Witten invariants, Commun. Math. Phys. 333 (2015) 717 [arXiv:1307.5997] [INSPIRE].
  28. [28]
    S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, Commun. Math. Phys. 167 (1995) 301 [hep-th/9308122] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces, Nucl. Phys. B 433 (1995) 501 [hep-th/9406055] [INSPIRE].
  30. [30]
    B.R. Greene, D.R. Morrison and M.R. Plesser, Mirror manifolds in higher dimension, Commun. Math. Phys. 173 (1995) 559 [hep-th/9402119] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    A. Klemm and R. Pandharipande, Enumerative geometry of Calabi-Yau 4-folds, Commun. Math. Phys. 281 (2008) 621 [math/0702189] [INSPIRE].
  32. [32]
    A. Popa and A. Zinger, Mirror symmetry for closed, open, and unoriented Gromov-Witten invariants, Adv. Math. 259 (2014) 448 [arXiv:1010.1946].MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    R. Pandharipande and A. Zinger, Enumerative Geometry of Calabi-Yau 5-Folds, in New Developments in Algebraic Geometry, Integrable Systems and Mirror Symmetry, Kyoto Japan (2008), pg. 239 [arXiv:0802.1640].
  34. [34]
    R. Gopakumar and C. Vafa, M theory and topological strings. 2., hep-th/9812127 [INSPIRE].
  35. [35]
    Y. Cao, D. Maulik and Y. Toda, Genus zero Gopakumar-Vafa type invariants for Calabi-Yau 4-folds, Adv. Math. 338 (2018) 41 [arXiv:1801.02513] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    P.S. Aspinwall and D.R. Morrison, Topological field theory and rational curves, Commun. Math. Phys. 151 (1993) 245 [hep-th/9110048] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    K. Hori and D. Tong, Aspects of Non-Abelian Gauge Dynamics in Two-Dimensional N = (2,2) Theories, JHEP 05 (2007) 079 [hep-th/0609032] [INSPIRE].
  39. [39]
    D. Inoue, A. Ito and M. Miura, I-functions of Calabi-Yau 3-folds in Grassmannians, Commun. Num. Theor. Phys. 11 (2017) 273 [arXiv:1607.08137].
  40. [40]
    S. Martin, Symplectic quotients by a nonAbelian group and by its maximal torus, Submitted to: Annals Math. (1999) [math/0001002] [INSPIRE].
  41. [41]
    L.C. Mihalcea, Giambelli formulae for the equivariant quantum cohomology of the Grassmannian, Trans. AMS 360 (2008) 2285 [math/0506335].
  42. [42]
    P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York U.S.A. (1978).Google Scholar
  43. [43]
    V.V. Batyrev, I. Ciocan-Fontanine, B. Kim and D. van Straten, Conifold Transitions and Mirror Symmetry for Calabi-Yau Complete Intersections in Grassmannians, Nucl. Phys. B 514 (1998) 640 [alg-geom/9710022].
  44. [44]
    B. Haghighat and A. Klemm, Topological Strings on Grassmannian Calabi-Yau manifolds, JHEP 01 (2009) 029 [arXiv:0802.2908] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    A. Gerhardus and H. Jockers, Quantum periods of Calabi-Yau fourfolds, Nucl. Phys. B 913 (2016) 425 [arXiv:1604.05325] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    B. Jia, E. Sharpe and R. Wu, Notes on nonabelian (0, 2) theories and dualities, JHEP 08 (2014) 017 [arXiv:1401.1511] [INSPIRE].
  47. [47]
    A.-M. Li and Y. Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math. 145 (2001) 151 [math/9803036].
  48. [48]
    C. Schoen, On the geometry of a special determinantal hypersurface associated to the Mumford-Horrocks vector bundle, J. Reine Angew. Math. 364 (1986) 85.Google Scholar
  49. [49]
    M. Gross and S. Popescu, Calabi-Yau threefolds and moduli of Abelian surfaces. 1., math/0001089 [INSPIRE].
  50. [50]
    T.H. Gulliksen and O.G. Negård, Un complexe résolvant pour certains idéaux déterminantiels, C.R. Acad. Sci. Paris Sér. A-B 274 (1972) A16.Google Scholar
  51. [51]
    M. Kapustka and G. Kapustka, A cascade of determinantal Calabi-Yau threefolds, Math. Nachr. 283 (2010) 1795 [arXiv:0802.3669].MathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    A. Caldararu, J. Knapp and E. Sharpe, GLSM realizations of maps and intersections of Grassmannians and Pfaffians, JHEP 04 (2018) 119 [arXiv:1711.00047] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    A. Kanazawa, Pfaffian Calabi-Yau threefolds and mirror symmetry, Commun. Num. Theor. Phys. 6 (2012) 661 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    T. Hübsch, Calabi-Yau manifolds: A Bestiary for physicists, World Scientific, Singapore (1992).Google Scholar
  55. [55]
    O. Küchle, On Fano 4-folds of index 1 and homogeneous vector bundles over Grassmannians, Math. Z. 218 (1995) 563.Google Scholar
  56. [56]
    L.B. Anderson, Heterotic and M-theory Compactifications for String Phenomenology, Ph.D. Thesis, Oxford University, Oxford U.K. (2008) [arXiv:0808.3621] [INSPIRE].
  57. [57]
    R. Blumenhagen, B. Jurke, T. Rahn and H. Roschy, Cohomology of Line Bundles: A Computational Algorithm, J. Math. Phys. 51 (2010) 103525 [arXiv:1003.5217] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    R. Blumenhagen, B. Jurke, T. Rahn and H. Roschy, Cohomology of Line Bundles: Applications, J. Math. Phys. 53 (2012) 012302 [arXiv:1010.3717] [INSPIRE].
  59. [59]
    A. Klemm, B. Lian, S.S. Roan and S.-T. Yau, Calabi-Yau fourfolds for M-theory and F-theory compactifications, Nucl. Phys. B 518 (1998) 515 [hep-th/9701023] [INSPIRE].
  60. [60]
    D. Inoue, A. Ito and M. Miura, Complete intersection Calabi-Yau manifolds with respect to homogeneous vector bundles on Grassmannians, arXiv:1607.07821.
  61. [61]
    V. Benedetti, Manifolds of low dimension with trivial canonical bundle in Grassmannians, arXiv:1609.02695.
  62. [62]
    D. Maulik, R. Pandharipande, R.P. Thomas and A. Pixton, Curves on K3 surfaces and modular forms, J. Topol. 3 (2010) 937 [arXiv:1001.2719] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Current Legal StudiesMeiji Gakuin UniversityYokohamaJapan
  2. 2.School of Mathematics and StatisticsUniversity of MelbourneParkvilleAustralia

Personalised recommendations