Advertisement

Journal of High Energy Physics

, 2018:45 | Cite as

Numerical study of the \( \mathcal{N}=2 \) Landau-Ginzburg model with two superfields

  • Okuto MorikawaEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

In the low energy limit, the two-dimensional massless \( \mathcal{N}=2 \) Wess-Zumino (WZ) model with a quasi-homogeneous superpotential is believed to become a superconformal field theory. This conjecture of the Landau-Ginzburg (LG) description has been studied numerically in the case of the A2, A3, and E6 minimal models. In this paper, by using a supersymmetric-invariant non-perturbative formulation, we simulate the WZ model with two superfields corresponding to the D3, D4, and E7 models. Then, we numerically determine the central charge, and obtain the results that are consistent with the conjectured correspondence. We hope that this numerical approach, when further developed, will be useful to investigate superstring theory via the LG/Calabi-Yau correspondence.

Keywords

Conformal Field Models in String Theory Extended Supersymmetry Field Theories in Lower Dimensions Lattice Quantum Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Wess and B. Zumino, Supergauge Transformations in Four-Dimensions, Nucl. Phys. B 70 (1974) 39 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    P. Di Vecchia, J.L. Petersen and H.B. Zheng, N = 2 Extended Superconformal Theories in Two-Dimensions, Phys. Lett. B 162 (1985) 327 [INSPIRE].
  3. [3]
    P. Di Vecchia, J.L. Petersen and M. Yu, On the Unitary Representations of N = 2 Superconformal Theory, Phys. Lett. B 172 (1986) 211 [INSPIRE].
  4. [4]
    P. Di Vecchia, J.L. Petersen, M. Yu and H.B. Zheng, Explicit Construction of Unitary Representations of the N = 2 Superconformal Algebra, Phys. Lett. B 174 (1986) 280 [INSPIRE].
  5. [5]
    W. Boucher, D. Friedan and A. Kent, Determinant Formulae and Unitarity for the N = 2 Superconformal Algebras in Two-Dimensions or Exact Results on String Compactification, Phys. Lett. B 172 (1986) 316 [INSPIRE].
  6. [6]
    D. Gepner, On the Spectrum of 2D Conformal Field Theories, Nucl. Phys. B 287 (1987) 111 [INSPIRE].
  7. [7]
    A. Cappelli, C. Itzykson and J.B. Zuber, Modular Invariant Partition Functions in Two-Dimensions, Nucl. Phys. B 280 (1987) 445 [INSPIRE].
  8. [8]
    A. Cappelli, Modular Invariant Partition Functions of Superconformal Theories, Phys. Lett. B 185 (1987) 82 [INSPIRE].
  9. [9]
    D. Gepner and Z.-a. Qiu, Modular Invariant Partition Functions for Parafermionic Field Theories, Nucl. Phys. B 285 (1987) 423 [INSPIRE].
  10. [10]
    D. Gepner, Space-Time Supersymmetry in Compactified String Theory and Superconformal Models, Nucl. Phys. B 296 (1988) 757 [INSPIRE].
  11. [11]
    A. Cappelli, C. Itzykson and J.B. Zuber, The ADE Classification of Minimal and A1(1) Conformal Invariant Theories, Commun. Math. Phys. 113 (1987) 1 [INSPIRE].
  12. [12]
    A. Kato, Classification of Modular Invariant Partition Functions in Two-dimensions, Mod. Phys. Lett. A 2 (1987) 585 [INSPIRE].
  13. [13]
    D. Gepner, Exactly Solvable String Compactifications on Manifolds of SU(N) Holonomy, Phys. Lett. B 199 (1987) 380 [INSPIRE].
  14. [14]
    D.A. Kastor, E.J. Martinec and S.H. Shenker, RG Flow in N = 1 Discrete Series, Nucl. Phys. B 316 (1989) 590 [INSPIRE].
  15. [15]
    C. Vafa and N.P. Warner, Catastrophes and the Classification of Conformal Theories, Phys. Lett. B 218 (1989) 51 [INSPIRE].
  16. [16]
    E.J. Martinec, Algebraic Geometry and Effective Lagrangians, Phys. Lett. B 217 (1989) 431 [INSPIRE].
  17. [17]
    W. Lerche, C. Vafa and N.P. Warner, Chiral Rings in N = 2 Superconformal Theories, Nucl. Phys. B 324 (1989) 427 [INSPIRE].
  18. [18]
    P.S. Howe and P.C. West, N = 2 Superconformal Models, Landau-Ginzburg Hamiltonians and the ϵ Expansion, Phys. Lett. B 223 (1989) 377 [INSPIRE].
  19. [19]
    S. Cecotti, L. Girardello and A. Pasquinucci, Nonperturbative Aspects and Exact Results for the N = 2 Landau-Ginzburg Models, Nucl. Phys. B 328 (1989) 701 [INSPIRE].
  20. [20]
    P.S. Howe and P.C. West, Chiral Correlators in Landau-Ginzburg Theories and N = 2 Superconformal Models, Phys. Lett. B 227 (1989) 397 [INSPIRE].
  21. [21]
    S. Cecotti, L. Girardello and A. Pasquinucci, Singularity Theory and N = 2 Supersymmetry, Int. J. Mod. Phys. A 6 (1991) 2427 [INSPIRE].
  22. [22]
    S. Cecotti, N = 2 Landau-Ginzburg versus Calabi-Yau σ-models: Nonperturbative aspects, Int. J. Mod. Phys. A 6 (1991) 1749 [INSPIRE].
  23. [23]
    E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys. A 9 (1994) 4783 [hep-th/9304026] [INSPIRE].
  24. [24]
    H. Kawai and Y. Kikukawa, A Lattice study of N = 2 Landau-Ginzburg model using a Nicolai map, Phys. Rev. D 83 (2011) 074502 [arXiv:1005.4671] [INSPIRE].
  25. [25]
    S. Kamata and H. Suzuki, Numerical simulation of the \( \mathcal{N}=\left(2,2\right) \) Landau-Ginzburg model, Nucl. Phys. B 854 (2012) 552 [arXiv:1107.1367] [INSPIRE].
  26. [26]
    O. Morikawa and H. Suzuki, Numerical study of the \( \mathcal{N}=2 \) Landau-Ginzburg model, PTEP 2018 (2018) 083B05 [arXiv:1805.10735] [INSPIRE].
  27. [27]
    Y. Kikukawa and Y. Nakayama, Nicolai mapping versus exact chiral symmetry on the lattice, Phys. Rev. D 66 (2002) 094508 [hep-lat/0207013] [INSPIRE].
  28. [28]
    D. Kadoh and H. Suzuki, Supersymmetric nonperturbative formulation of the WZ model in lower dimensions, Phys. Lett. B 684 (2010) 167 [arXiv:0909.3686] [INSPIRE].
  29. [29]
    H. Nicolai, On a New Characterization of Scalar Supersymmetric Theories, Phys. Lett. B 89 (1980) 341 [INSPIRE].
  30. [30]
    H. Nicolai, Supersymmetry and Functional Integration Measures, Nucl. Phys. B 176 (1980) 419 [INSPIRE].
  31. [31]
    G. Parisi and N. Sourlas, Supersymmetric Field Theories and Stochastic Differential Equations, Nucl. Phys. B 206 (1982) 321 [INSPIRE].
  32. [32]
    S. Cecotti and L. Girardello, Stochastic and parastochastic aspects of supersymmetric functional measures: a new nonperturbative approach to supersymmetry, Annals Phys. 145 (1983) 81 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    S. Nicolis, Probing the holomorphic anomaly of the D = 2, \( \mathcal{N}=2 \) , Wess-Zumino model on the lattice, arXiv:1712.07045 [INSPIRE].
  34. [34]
    A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    A. Cappelli and J.I. Latorre, Perturbation Theory of Higher Spin Conserved Currents Off Criticality, Nucl. Phys. B 340 (1990) 659 [INSPIRE].
  36. [36]
    S. Cecotti, Geometry of N = 2 Landau-Ginzburg families, Nucl. Phys. B 355 (1991) 755 [INSPIRE].
  37. [37]
    B.R. Greene, C. Vafa and N.P. Warner, Calabi-Yau Manifolds and Renormalization Group Flows, Nucl. Phys. B 324 (1989) 371 [INSPIRE].
  38. [38]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].
  39. [39]
    J. Bartels and J.B. Bronzan, Supersymmetry on a Lattice, Phys. Rev. D 28 (1983) 818 [INSPIRE].
  40. [40]
    S.D. Drell, M. WEinstein and S. Yankielowicz, Strong-coupling field theory. I. Variational approach to φ 4 theory, Phys. Rev. D 14 (1976) 487 [INSPIRE].
  41. [41]
    S.D. Drell, M. WEinstein and S. Yankielowicz, Strong Coupling Field Theories. 2. Fermions and Gauge Fields on a Lattice, Phys. Rev. D 14 (1976) 1627 [INSPIRE].
  42. [42]
    P.H. Dondi and H. Nicolai, Lattice Supersymmetry, Nuovo Cim. A 41 (1977) 1 [INSPIRE].
  43. [43]
    L.H. Karsten and J. Smit, The Vacuum Polarization With SLAC Lattice Fermions, Phys. Lett. B 85 (1979) 100 [INSPIRE].
  44. [44]
    M. Kato, M. Sakamoto and H. So, Taming the Leibniz Rule on the Lattice, JHEP 05 (2008) 057 [arXiv:0803.3121] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G. Bergner, Complete supersymmetry on the lattice and a No-Go theorem, JHEP 01 (2010) 024 [arXiv:0909.4791] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B 202 (1982) 253 [INSPIRE].
  47. [47]
    S. Cecotti and L. Girardello, Functional Measure, Topology and Dynamical Supersymmetry Breaking, Phys. Lett. B 110 (1982) 39 [INSPIRE].
  48. [48]
    S. Catterall and S. Karamov, Exact lattice supersymmetry: The two-dimensional N = 2 Wess-Zumino model, Phys. Rev. D 65 (2002) 094501 [hep-lat/0108024] [INSPIRE].
  49. [49]
    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press, (1998).Google Scholar
  50. [50]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, (1998).Google Scholar
  51. [51]
    A.A. Tseytlin, Conditions of Weyl Invariance of Two-dimensional σ Model From Equations of Stationarity ofCentral ChargeAction, Phys. Lett. B 194 (1987) 63 [INSPIRE].
  52. [52]
    J. Polchinski, Scale and Conformal Invariance in Quantum Field Theory, Nucl. Phys. B 303 (1988) 226 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsKyushu UniversityFukuokaJapan

Personalised recommendations