Advertisement

Journal of High Energy Physics

, 2018:43 | Cite as

\( {R}_{D^{\left(*\right)}} \) in custodial warped space

  • Marcela Carena
  • Eugenio MegíasEmail author
  • Mariano Quirós
  • Carlos Wagner
Open Access
Regular Article - Theoretical Physics

Abstract

Flavor physics experiments allow to probe the accuracy of the Standard Model (SM) description at low energies, and are sensitive to new heavy gauge bosons that couple to quarks and leptons in a relevant way. The apparent anomaly in the ratios of the decay of B-mesons into D-mesons and different lepton flavors, \( {R}_{D^{\left(*\right)}}=\mathrm{\mathcal{B}}\left(B\to {D}^{\left(\ast \right)}\tau \nu \right)/\mathrm{\mathcal{B}}\left(B\to {D}^{\left(\ast \right)}\ell \nu \right) \) is particularly intriguing, since these decay processes occur at tree-level in the SM. Recently, it has been suggested that this anomaly may be explained by new gauge bosons coupled to right-handed currents of quarks and leptons, involving light right-handed neutrinos. In this work we present a well-motivated ultraviolet complete realization of this idea, embedding the SM in a warped space with an SU(2)L ⊗ SU(2)R ⊗ U(1)BL bulk gauge symmetry. Besides providing a solution to the hierarchy problem, we show that this model, which has an explicit custodial symmetry, can explain the \( {R}_{D^{\left(*\right)}} \) anomaly and at the same time allow for a solution to the \( {R}_{K^{\left(*\right)}} \) anomalies, related to the decay of B-mesons into K-mesons and leptons, \( {R}_{K^{\left(*\right)}}=\mathrm{\mathcal{B}}\left(B\to {K}^{\left(\ast \right)}\mu \mu \right)/\mathrm{\mathcal{B}}\left(B\to {K}^{\left(\ast \right)}ee\right) \). In addition, a model prediction is an anomalous value of the forward-backward asymmetry A FB b , driven by the \( Z{\overline{b}}_R{b}_R \) coupling, in agreement with LEP data.

Keywords

Phenomenology of Field Theories in Higher Dimensions Phenomenology of Large extra dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  4. [4]
    BaBar collaboration, J.P. Lees et al., Evidence for an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
  5. [5]
    BaBar collaboration, J.P. Lees et al., Measurement of an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays and implications for charged Higgs bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
  6. [6]
    Belle collaboration, M. Huschle et al., Measurement of the branching ratio of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( \overline{B}\to {D}^{\left(\ast \right)}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
  7. [7]
    Belle collaboration, Y. Sato et al., Measurement of the branching ratio of \( {\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( {\overline{B}}^0\to {D}^{\ast +}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with a semileptonic tagging method, Phys. Rev. D 94 (2016) 072007 [arXiv:1607.07923] [INSPIRE].
  8. [8]
    Belle collaboration, S. Hirose et al., Measurement of the τ lepton polarization and R(D *) in the decay \( \overline{B}\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \), Phys. Rev. Lett. 118 (2017) 211801 [arXiv:1612.00529] [INSPIRE].
  9. [9]
    Belle collaboration, A. Abdesselam et al., Measurement of the branching ratio of \( {\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( {\overline{B}}^0\to {D}^{\ast +}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with a semileptonic tagging method, in the proceedings of the 51st Rencontres de Moriond on Electroweak Interactions and Unified Theories, March 12–19, La Thuile, Italy (2016), arXiv:1603.06711 [INSPIRE].
  10. [10]
    A. Abdesselam et al., Measurement of the τ lepton polarization in the decay \( \overline{B}\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \), arXiv:1608.06391 [INSPIRE].
  11. [11]
    LHCb collaboration, Measurement of the ratio of branching fractions \( \mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [Erratum ibid. 115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].
  12. [12]
    BaBar collaboration, J.P. Lees et al., Search for \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) and invisible quarkonium decays, Phys. Rev. D 87 (2013) 112005 [arXiv:1303.7465] [INSPIRE].
  13. [13]
    Belle collaboration, O. Lutz et al., Search for \( B\to {h}^{\left(\ast \right)}\nu \overline{\nu} \) with the full Belle ϒ(4S) data sample, Phys. Rev. D 87 (2013) 111103 [arXiv:1303.3719] [INSPIRE].
  14. [14]
    Belle collaboration, J. Grygier et al., Search for \( B\to h\nu \overline{\nu} \) decays with semileptonic tagging at Belle, Phys. Rev. D 96 (2017) 091101 [arXiv:1702.03224] [INSPIRE].
  15. [15]
    P. Asadi, M.R. Buckley and D. Shih, Its all right(-handed neutrinos): a new Wmodel for the \( {R}_{D^{\left(*\right)}} \) anomaly, JHEP 09 (2018) 010 [arXiv:1804.04135] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Greljo, D.J. Robinson, B. Shakya and J. Zupan, R(D (*)) from Wand right-handed neutrinos, JHEP 09 (2018) 169 [arXiv:1804.04642] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R.N. Mohapatra and J.C. Pati, Left-right gauge symmetry and an isoconjugate model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE].ADSGoogle Scholar
  18. [18]
    R.N. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].ADSGoogle Scholar
  19. [19]
    G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].ADSGoogle Scholar
  20. [20]
    K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].
  21. [21]
    M. Blanke et al., ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Blanke et al., Rare K and B decays in a warped extra dimension with custodial protection, JHEP 03 (2009) 108 [arXiv:0812.3803] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Blanke and A. Crivellin, B meson anomalies in a Pati-Salam model within the Randall-Sundrum background, Phys. Rev. Lett. 121 (2018) 011801 [arXiv:1801.07256] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Azatov et al., Anatomy of bcτν anomalies, arXiv:1805.03209 [INSPIRE].
  25. [25]
    E. Megias, G. Panico, O. Pujolàs and M. Quirós, A natural origin for the LHCb anomalies, JHEP 09 (2016) 118 [arXiv:1608.02362] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    E. Megias, M. Quirós and L. Salas, Lepton-flavor universality violation in R K and \( {R}_{D^{\left(*\right)}} \) from warped space, JHEP 07 (2017) 102 [arXiv:1703.06019] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    E. Megias, M. Quirós and L. Salas, Lepton-flavor universality limits in warped space, Phys. Rev. D 96 (2017) 075030 [arXiv:1707.08014] [INSPIRE].ADSGoogle Scholar
  28. [28]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  29. [29]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].
  30. [30]
    E. Megias, G. Panico, O. Pujolàs and M. Quirós, A natural extra-dimensional origin for the LHCb anomalies, in the proceedings of the 52nd Rencontres de Moriond on Electroweak Interactions and Unified Theories, March 18–25, La Thuile, Italy (2017), arXiv:1705.04822 [INSPIRE].
  31. [31]
    S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269 [hep-ph/0303183] [INSPIRE].
  32. [32]
    G. Moreau and J.I. Silva-Marcos, Neutrinos in warped extra dimensions, JHEP 01 (2006) 048 [hep-ph/0507145] [INSPIRE].
  33. [33]
    C. Csáki, C. Delaunay, C. Grojean and Y. Grossman, A model of lepton masses from a warped extra dimension, JHEP 10 (2008) 055 [arXiv:0806.0356] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G. Perez and L. Randall, Natural neutrino masses and mixings from warped geometry, JHEP 01 (2009) 077 [arXiv:0805.4652] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G. von Gersdorff, M. Quirós and M. Wiechers, Neutrino mixing from Wilson lines in warped space, JHEP 02 (2013) 079 [arXiv:1208.4300] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    S.M. Barr, A different seesaw formula for neutrino masses, Phys. Rev. Lett. 92 (2004) 101601 [hep-ph/0309152] [INSPIRE].
  37. [37]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    HFLAV collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
  39. [39]
    S. Jaiswal, S. Nandi and S.K. Patra, Extraction of |V cb| from BD (*) ℓν and the standard model predictions of R(D (*)), JHEP 12 (2017) 060 [arXiv:1707.09977] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    C.-T. Tran, M.A. Ivanov, J.G. Körner and P. Santorelli, Implications of new physics in the decays B c → (J/ψ, η c)τν, Phys. Rev. D 97 (2018) 054014 [arXiv:1801.06927] [INSPIRE].ADSGoogle Scholar
  41. [41]
    R. Alonso, B. Grinstein and J. Martin Camalich, Lifetime of B c constrains explanations for anomalies in BD (*) τν, Phys. Rev. Lett. 118 (2017) 081802 [arXiv:1611.06676] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    LHCb collaboration, Measurement of the ratio of branching fractions ℬ(B c+ → J/ψτ + ν τ)/ℬ(B c+ → J/ψμ + ν μ), Phys. Rev. Lett. 120 (2018) 121801 [arXiv:1711.05623] [INSPIRE].
  43. [43]
    Z.-R. Huang, Y. Li, C.-D. Lu, M.A. Paracha and C. Wang, Footprints of new physics in bcτν transitions, arXiv:1808.03565 [INSPIRE].
  44. [44]
    A. Issadykov and M.A. Ivanov, The decays \( {B}_c\to J/\psi +\overline{\ell}{\nu}_{\ell}\kern0.5em and\kern0.5em {B}_c\to J/\psi +\pi (K) \) in covariant confined quark model, Phys. Lett. B 783 (2018) 178 [arXiv:1804.00472] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T.D. Cohen, H. Lamm and R.F. Lebed, Model-independent bounds on R(J/ψ), JHEP 09 (2018) 168 [arXiv:1807.02730] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    F. Feruglio, P. Paradisi and A. Pattori, On the importance of electroweak corrections for B anomalies, JHEP 09 (2017) 061 [arXiv:1705.00929] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Falkowski, M. González-Alonso and K. Mimouni, Compilation of low-energy constraints on 4-fermion operators in the SMEFT, JHEP 08 (2017) 123 [arXiv:1706.03783] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Carena et al., Warped fermions and precision tests, Phys. Rev. D 71 (2005) 015010 [hep-ph/0410344] [INSPIRE].
  49. [49]
    M. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Light Kaluza Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [INSPIRE].
  50. [50]
    M. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [INSPIRE].
  51. [51]
    G. Isidori, Flavour physics and implication for new phenomena, Adv. Ser. Direct. High Energy Phys. 26 (2016) 339 [arXiv:1507.00867] [INSPIRE].CrossRefzbMATHGoogle Scholar
  52. [52]
    Z. Ligeti, TASI lectures on flavor physics, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics. Journeys Through the Precision Frontier: Amplitudes for Colliders (TASI 2014), June 2–27, Boulder, U.S.A. (2014), arXiv:1502.01372 [INSPIRE].
  53. [53]
    A. Pich, Precision τ physics, Prog. Part. Nucl. Phys. 75 (2014) 41 [arXiv:1310.7922] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    ATLAS collaboration, Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 565 [arXiv:1804.10823] [INSPIRE].
  56. [56]
    ATLAS collaboration, Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 032016 [arXiv:1805.09299] [INSPIRE].
  57. [57]
    ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 01 (2018) 055 [arXiv:1709.07242] [INSPIRE].
  58. [58]
    A. Greljo, G. Isidori and D. Marzocca, On the breaking of lepton flavor universality in B decays, JHEP 07 (2015) 142 [arXiv:1506.01705] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    ATLAS collaboration, Search for high-mass resonances decaying to τν in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. Lett. 120 (2018) 161802 [arXiv:1801.06992] [INSPIRE].
  60. [60]
    D.A. Faroughy, A. Greljo and J.F. Kamenik, Confronting lepton flavor universality violation in B decays with high-p T τ lepton searches at LHC, Phys. Lett. B 764 (2017) 126 [arXiv:1609.07138] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Brane localized kinetic terms in the Randall-Sundrum model, Phys. Rev. D 68 (2003) 045002 [hep-ph/0212279] [INSPIRE].
  62. [62]
    M. Carena, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Opaque branes in warped backgrounds, Phys. Rev. D 67 (2003) 096006 [hep-ph/0212307] [INSPIRE].
  63. [63]
    A. Djouadi, G. Moreau and F. Richard, Forward-backward asymmetries of the bottom and top quarks in warped extra-dimensional models: LHC predictions from the LEP and Tevatron anomalies, Phys. Lett. B 701 (2011) 458 [arXiv:1105.3158] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    D. Liu, J. Liu, C.E.M. Wagner and X.-P. Wang, Bottom-quark Forward-Backward Asymmetry, Dark Matter and the LHC, Phys. Rev. D 97 (2018) 055021 [arXiv:1712.05802] [INSPIRE].ADSGoogle Scholar
  65. [65]
    A.J. Buras, J. Girrbach-Noe, C. Niehoff and D.M. Straub, \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) decays in the Standard Model and beyond, JHEP 02 (2015) 184 [arXiv:1409.4557] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    BaBar collaboration, J.P. Lees et al., Search for B +K + τ + τ at the BaBar experiment, Phys. Rev. Lett. 118 (2017) 031802 [arXiv:1605.09637] [INSPIRE].
  67. [67]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  68. [68]
    LHCb collaboration, Test of lepton universality with B 0K *0 + decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  69. [69]
    G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].
  70. [70]
    G. Hiller and M. Schmaltz, Diagnosing lepton-nonuniversality in bsℓℓ, JHEP 02 (2015) 055 [arXiv:1411.4773] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    C. Bobeth, G. Hiller and G. Piranishvili, Angular distributions of \( \overline{B}\to \overline{K}{\ell}^{+}{\ell}^{-} \) decays, JHEP 12 (2007) 040 [arXiv:0709.4174] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    A. Crivellin et al., Lepton-flavour violating B decays in generic Zmodels, Phys. Rev. D 92 (2015) 054013 [arXiv:1504.07928] [INSPIRE].ADSGoogle Scholar
  73. [73]
    S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, Global analysis of bsℓℓ anomalies, JHEP 06 (2016) 092 [arXiv:1510.04239] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, The bsl + l −1 anomalies and their implications for new physics, in the proceedings of the 51st Rencontres de Moriond on Electroweak Interactions and Unified Theories, March 12–19, La Thuile, Italy (2016), arXiv:1605.06059 [INSPIRE].
  75. [75]
    T. Hurth, F. Mahmoudi and S. Neshatpour, On the anomalies in the latest LHCb data, Nucl. Phys. B 909 (2016) 737 [arXiv:1603.00865] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    W. Altmannshofer, C. Niehoff, P. Stangl and D.M. Straub, Status of the BK * μ + μ anomaly after Moriond 2017, Eur. Phys. J. C 77 (2017) 377 [arXiv:1703.09189] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    B. Capdevila et al., Patterns of new physics in bsℓ + transitions in the light of recent data, JHEP 01 (2018) 093 [arXiv:1704.05340] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    F. Mahmoudi, T. Hurth and S. Neshatpour, Updated fits to the present bsℓ + data, Acta Phys. Polon. B 49 (2018) 1267 [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    J.A. Cabrer, G. von Gersdorff and M. Quirós, Flavor phenomenology in general 5D warped spaces, JHEP 01 (2012) 033 [arXiv:1110.3324] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Fermi National Accelerator LaboratoryBataviaU.S.A.
  2. 2.Enrico Fermi Institute and Kavli Institute for Cosmological PhysicsUniversity of ChicagoChicagoU.S.A.
  3. 3.Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y ComputacionalUniversidad de GranadaGranadaSpain
  4. 4.Institut de Física d’Altes Energies (IFAE) and BISTBellaterraSpain
  5. 5.Department of PhysicsUniversity of Notre DameNotre DameU.S.A.
  6. 6.HEP DivisionArgonne National LaboratoryArgonneU.S.A.

Personalised recommendations