Journal of High Energy Physics

, 2018:42 | Cite as

Neutralino dark matter in scenarios with early matter domination

  • Manuel Drees
  • Fazlollah HajkarimEmail author
Open Access
Regular Article - Theoretical Physics


We investigate the production of neutralino dark matter in a cosmological scenario featuring an early matter dominated era ending at a relatively low reheating temperature. In such scenarios different production mechanisms of weakly interacting massive particles (WIMPs), besides the well-studied thermal production, can be important. This opens up new regions of parameter space where the lightest neutralino, as the best-known supersymmetric (SUSY) WIMP, obtains the required relic abundance. Many of these new sets of parameters are also compatible with current limits from colliders as well as direct and indirect WIMP searches. In particular, in standard cosmology bino-like neutralinos, which emerge naturally as lightest neutralino in many models, can have the desired relic density only in some finetuned regions of parameter space where the effective annihilation cross section is enhanced by co-annihilation or an s-channel pole. In contrast, if the energy density of the universe was dominated by long-lived PeV-scale particles (e.g. moduli or Polonyi fields), bino-like neutralinos can obtain the required relic density over wide regions of supersymmetric parameter space. We identify the interesting ranges of mass and decay properties of the heavy long-lived particles, carefully treating the evolution of the temperature of the thermal background.


Supersymmetry Phenomenology Strings and branes phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric Relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].
  2. [2]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].
  3. [3]
    L. Roszkowski, E.M. Sessolo and S. Trojanowski, WIMP dark matter candidates and searchescurrent status and future prospects, Rept. Prog. Phys. 81 (2018) 066201 [arXiv:1707.06277] [INSPIRE].
  4. [4]
    E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys. 69 (1990) 1 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].
  6. [6]
    M. Chakraborti, U. Chattopadhyay and S. Poddar, How light a higgsino or a wino dark matter can become in a compressed scenario of MSSM, JHEP 09 (2017) 064 [arXiv:1702.03954] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY Endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J.L. Feng, K.T. Matchev and T. Moroi, Multi-TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [INSPIRE].
  9. [9]
    R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].
  10. [10]
    H. Baer, V. Barger, D. Mickelson and M. Padeffke-Kirkland, SUSY models under siege: LHC constraints and electroweak fine-tuning, Phys. Rev. D 89 (2014) 115019 [arXiv:1404.2277] [INSPIRE].
  11. [11]
    G.G. Ross, K. Schmidt-Hoberg and F. Staub, On the MSSM Higgsino mass and fine tuning, Phys. Lett. B 759 (2016) 110 [arXiv:1603.09347] [INSPIRE].
  12. [12]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].
  13. [13]
    J.R. Ellis, T. Falk and K.A. Olive, Neutralino-stau coannihilation and the cosmological upper limit on the mass of the lightest supersymmetric particle, Phys. Lett. B 444 (1998) 367 [hep-ph/9810360] [INSPIRE].
  14. [14]
    C. Boehm, A. Djouadi and M. Drees, Light scalar top quarks and supersymmetric dark matter, Phys. Rev. D 62 (2000) 035012 [hep-ph/9911496] [INSPIRE].
  15. [15]
    M. Drees and M.M. Nojiri, The neutralino relic density in minimal N = 1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [INSPIRE].
  16. [16]
    M. Tegmark, A. Aguirre, M. Rees and F. Wilczek, Dimensionless constants, cosmology and other dark matters, Phys. Rev. D 73 (2006) 023505 [astro-ph/0511774] [INSPIRE].
  17. [17]
    H. Baer, A. Lessa, S. Rajagopalan and W. Sreethawong, Mixed axion/neutralino cold dark matter in supersymmetric models, JCAP 06 (2011) 031 [arXiv:1103.5413] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    H. Baer, K.-Y. Choi, J.E. Kim and L. Roszkowski, Dark matter production in the early Universe: beyond the thermal WIMP paradigm, Phys. Rept. 555 (2015) 1 [arXiv:1407.0017] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    Particle Data Group collaboration, M. Tanabashi et al., Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  20. [20]
    XENON collaboration, E. Aprile et al., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  21. [21]
    Fermi-LAT and MAGIC collaborations, M.L. Ahnen et al., Limits to Dark Matter Annihilation Cross-Section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies, JCAP 02 (2016) 039 [arXiv:1601.06590] [INSPIRE].
  22. [22]
    J. Polonyi, Generalization of the Massive Scalar Multiplet Coupling to the Supergravity, KFKI-77-93 [INSPIRE].
  23. [23]
    A. Vilenkin and L.H. Ford, Gravitational Effects upon Cosmological Phase Transitions, Phys. Rev. D 26 (1982) 1231 [INSPIRE].
  24. [24]
    A.D. Linde, Scalar Field Fluctuations in Expanding Universe and the New Inflationary Universe Scenario, Phys. Lett. B 116 (1982) 335 [INSPIRE].
  25. [25]
    A.A. Starobinsky, Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations, Phys. Lett. B 117 (1982) 175 [INSPIRE].
  26. [26]
    A.S. Goncharov, A.D. Linde and M.I. Vysotsky, Cosmological problems for spontaneously broken supergravity, Phys. Lett. B 147 (1984) 279 [INSPIRE].
  27. [27]
    M. Dine, L. Randall and S.D. Thomas, Supersymmetry breaking in the early universe, Phys. Rev. Lett. 75 (1995) 398 [hep-ph/9503303] [INSPIRE].
  28. [28]
    A.G. Polnarev and M.Y. Khlopov, Era of superheavy-particle dominance and big bang nucleosynthesis, Sov. Astron. 26 (1982) 9 [Astron. Zh. 59 (1982) 15].Google Scholar
  29. [29]
    G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological Problems for the Polonyi Potential, Phys. Lett. B 131 (1983) 59 [INSPIRE].
  30. [30]
    M. Kawasaki, K. Kohri and N. Sugiyama, MeV scale reheating temperature and thermalization of neutrino background, Phys. Rev. D 62 (2000) 023506 [astro-ph/0002127] [INSPIRE].
  31. [31]
    S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev. D 70 (2004) 043506 [astro-ph/0403291] [INSPIRE].
  32. [32]
    P.F. de Salas, M. Lattanzi, G. Mangano, G. Miele, S. Pastor and O. Pisanti, Bounds on very low reheating scenarios after Planck, Phys. Rev. D 92 (2015) 123534 [arXiv:1511.00672] [INSPIRE].
  33. [33]
    G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].
  34. [34]
    G. Gelmini, P. Gondolo, A. Soldatenko and C.E. Yaguna, The effect of a late decaying scalar on the neutralino relic density, Phys. Rev. D 74 (2006) 083514 [hep-ph/0605016] [INSPIRE].
  35. [35]
    D.J.H. Chung, E.W. Kolb and A. Riotto, Production of massive particles during reheating, Phys. Rev. D 60 (1999) 063504 [hep-ph/9809453] [INSPIRE].
  36. [36]
    T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].
  37. [37]
    G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123] [INSPIRE].
  38. [38]
    C. Pallis, Massive particle decay and cold dark matter abundance, Astropart. Phys. 21 (2004) 689 [hep-ph/0402033] [INSPIRE].
  39. [39]
    B.S. Acharya, G. Kane, S. Watson and P. Kumar, A Non-thermal WIMP Miracle, Phys. Rev. D 80 (2009) 083529 [arXiv:0908.2430] [INSPIRE].
  40. [40]
    G. Arcadi and P. Ullio, Accurate estimate of the relic density and the kinetic decoupling in non-thermal dark matter models, Phys. Rev. D 84 (2011) 043520 [arXiv:1104.3591] [INSPIRE].
  41. [41]
    G.L. Kane, P. Kumar, B.D. Nelson and B. Zheng, Dark matter production mechanisms with a nonthermal cosmological history: A classification, Phys. Rev. D 93 (2016) 063527 [arXiv:1502.05406] [INSPIRE].
  42. [42]
    S. Hamdan and J. Unwin, Dark Matter Freeze-out During Matter Domination, Mod. Phys. Lett. A 33 (2018) 1850181 [arXiv:1710.03758] [INSPIRE].
  43. [43]
    N. Bernal, C. Cosme, T. Tenkanen and V. Vaskonen, Scalar singlet dark matter in non-standard cosmologies, arXiv:1806.11122 [INSPIRE].
  44. [44]
    R. Easther, R. Galvez, O. Özsoy and S. Watson, Supersymmetry, Nonthermal Dark Matter and Precision Cosmology, Phys. Rev. D 89 (2014) 023522 [arXiv:1307.2453] [INSPIRE].
  45. [45]
    R. Allahverdi, M. Cicoli, B. Dutta and K. Sinha, Nonthermal dark matter in string compactifications, Phys. Rev. D 88 (2013) 095015 [arXiv:1307.5086] [INSPIRE].
  46. [46]
    L. Roszkowski, S. Trojanowski and K. Turzynski, Neutralino and gravitino dark matter with low reheating temperature, JHEP 11 (2014) 146 [arXiv:1406.0012] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    L. Aparicio et al., Non-thermal CMSSM with a 125 GeV Higgs, JHEP 05 (2015) 098 [arXiv:1502.05672] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    L. Aparicio, M. Cicoli, B. Dutta, F. Muia and F. Quevedo, Light Higgsino Dark Matter from Non-thermal Cosmology, JHEP 11 (2016) 038 [arXiv:1607.00004] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    M. Drees and F. Hajkarim, Dark Matter Production in an Early Matter Dominated Era, JCAP 02 (2018) 057 [arXiv:1711.05007] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Drees, F. Hajkarim and E.R. Schmitz, The Effects of QCD Equation of State on the Relic Density of WIMP Dark Matter, JCAP 06 (2015) 025 [arXiv:1503.03513] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    K. Harigaya and K. Mukaida, Thermalization after/during Reheating, JHEP 05 (2014) 006 [arXiv:1312.3097] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    K. Harigaya, M. Kawasaki, K. Mukaida and M. Yamada, Dark Matter Production in Late Time Reheating, Phys. Rev. D 89 (2014) 083532 [arXiv:1402.2846] [INSPIRE].
  53. [53]
    K. Mukaida and M. Yamada, Thermalization Process after Inflation and Effective Potential of Scalar Field, JCAP 02 (2016) 003 [arXiv:1506.07661] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    R. Allahverdi and M. Drees, Thermalization after inflation and production of massive stable particles, Phys. Rev. D 66 (2002) 063513 [hep-ph/0205246] [INSPIRE].
  55. [55]
    J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].
  56. [56]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].
  57. [57]
    M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles: An account of four-dimensional N=1 supersymmetry in high energy physics, World Scientific, Hackensack, U.S.A., (2004).Google Scholar
  58. [58]
    H.K. Dreiner, S. Heinemeyer, O. Kittel, U. Langenfeld, A.M. Weber and G. Weiglein, Mass Bounds on a Very Light Neutralino, Eur. Phys. J. C 62 (2009) 547 [arXiv:0901.3485] [INSPIRE].
  59. [59]
    N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].
  60. [60]
    S. Mizuta and M. Yamaguchi, Coannihilation effects and relic abundance of Higgsino dominant LSP(s), Phys. Lett. B 298 (1993) 120 [hep-ph/9208251] [INSPIRE].
  61. [61]
    M. Drees and J. Gu, Enhanced One-Loop Corrections to WIMP Annihilation and their Thermal Relic Density in the Coannihilation Region, Phys. Rev. D 87 (2013) 063524 [arXiv:1301.1350] [INSPIRE].
  62. [62]
    J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].
  63. [63]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].
  64. [64]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [INSPIRE].
  65. [65]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].
  66. [66]
    V. Maurer, T3PS v1.0: Tool for Parallel Processing in Parameter Scans, Comput. Phys. Commun. 198 (2016) 195 [arXiv:1503.01073] [INSPIRE].
  67. [67]
    ATLAS and CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  68. [68]
    ATLAS collaboration, Measurement of the Higgs boson mass in the HZZ → 4ℓ and Hγγ channels with \( \sqrt{s}=7 \) TeV pp collisions using the ATLAS detector, Phys. Lett. B 784 (2018) 345 [arXiv:1806.00242] [INSPIRE].
  69. [69]
    M. Drees and M. Nojiri, Neutralino - nucleon scattering revisited, Phys. Rev. D 48 (1993) 3483 [hep-ph/9307208] [INSPIRE].
  70. [70]
    A.L. Erickcek, The Dark Matter Annihilation Boost from Low-Temperature Reheating, Phys. Rev. D 92 (2015) 103505 [arXiv:1504.03335] [INSPIRE].
  71. [71]
    A.L. Erickcek, K. Sinha and S. Watson, Bringing Isolated Dark Matter Out of Isolation: Late-time Reheating and Indirect Detection, Phys. Rev. D 94 (2016) 063502 [arXiv:1510.04291] [INSPIRE].
  72. [72]
    J. Fan, O. Özsoy and S. Watson, Nonthermal histories and implications for structure formation, Phys. Rev. D 90 (2014) 043536 [arXiv:1405.7373] [INSPIRE].
  73. [73]
    K.J. Bae, H. Baer, A. Lessa and H. Serce, Coupled Boltzmann computation of mixed axion neutralino dark matter in the SUSY DFSZ axion model, JCAP 10 (2014) 082 [arXiv:1406.4138] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A. Arbey, J. Ellis, F. Mahmoudi and G. Robbins, Dark Matter Casts Light on the Early Universe, JHEP 10 (2018) 132 [arXiv:1807.00554] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Bethe Center for Theoretical Physics and Physikalisches InstitutUniversität BonnBonnGermany

Personalised recommendations