Journal of High Energy Physics

, 2018:37 | Cite as

Squashing the boundary of supersymmetric AdS5 black holes

  • Davide Cassani
  • Lorenzo PapiniEmail author
Open Access
Regular Article - Theoretical Physics


We construct new supersymmetric black holes in five-dimensional supergravity with an arbitrary number of vector multiplets and Fayet-Iliopoulos gauging. These are asymptotically locally AdS5 and the conformal boundary comprises a squashed three-sphere with SU(2) × U(1) symmetry. The solution depends on two parameters, of which one determines the angular momentum and the Page electric charges, while the other controls the squashing at the boundary. The latter is arbitrary, however in the flow towards the horizon it is attracted to a value that only depends on the other parameter of the solution. The entropy is reproduced by a simple formula involving the angular momentum and the Page charges, rather than the holographic charges. Choosing the appropriate five-dimensional framework, the solution can be uplifted to type IIB supergravity on S5 and should thus be dual to \( \mathcal{N} \) = 4 super Yang-Mills on a rotating, squashed Einstein universe.


AdS-CFT Correspondence Black Holes in String Theory Supergravity Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Sen, Quantum entropy function from AdS 2 /CFT 1 correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS 4 from supersymmetric localization, JHEP 05 (2016) 054 [arXiv:1511.04085] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    F. Benini, K. Hristov and A. Zaffaroni, Exact microstate counting for dyonic black holes in AdS 4, Phys. Lett. B 771 (2017) 462 [arXiv:1608.07294] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    S.M. Hosseini and A. Zaffaroni, Large N matrix models for 3d \( \mathcal{N} \) = 2 theories: twisted index, free energy and black holes, JHEP 08 (2016) 064 [arXiv:1604.03122] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    F. Benini and A. Zaffaroni, Supersymmetric partition functions on Riemann surfaces, Proc. Symp. Pure Math. 96 (2017) 13 [arXiv:1605.06120] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  6. [6]
    A. Cabo-Bizet, V.I. Giraldo-Rivera and L.A. Pando Zayas, Microstate counting of AdS 4 hyperbolic black hole entropy via the topologically twisted index, JHEP 08 (2017) 023 [arXiv:1701.07893] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    F. Azzurli et al., A universal counting of black hole microstates in AdS 4, JHEP 02 (2018) 054 [arXiv:1707.04257] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    S.M. Hosseini, K. Hristov and A. Passias, Holographic microstate counting for AdS 4 black holes in massive IIA supergravity, JHEP 10 (2017) 190 [arXiv:1707.06884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    F. Benini, H. Khachatryan and P. Milan, Black hole entropy in massive Type IIA, Class. Quant. Grav. 35 (2018) 035004 [arXiv:1707.06886] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J.T. Liu, L.A. Pando Zayas, V. Rathee and W. Zhao, One-loop test of quantum black holes in anti-de Sitter space, Phys. Rev. Lett. 120 (2018) 221602 [arXiv:1711.01076] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.B. Gutowski and H.S. Reall, Supersymmetric AdS 5 black holes, JHEP 02 (2004) 006 [hep-th/0401042] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Five-dimensional gauged supergravity black holes with independent rotation parameters, Phys. Rev. D 72 (2005) 041901 [hep-th/0505112] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Supersymmetric multi-charge AdS 5 black holes, JHEP 04 (2006) 036 [hep-th/0601156] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S.M. Hosseini, K. Hristov and A. Zaffaroni, An extremization principle for the entropy of rotating BPS black holes in AdS 5, JHEP 07 (2017) 106 [arXiv:1705.05383] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    B. Assel, D. Cassani and D. Martelli, Localization on Hopf surfaces, JHEP 08 (2014) 123 [arXiv:1405.5144] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    B. Assel et al., The Casimir energy in curved space and its supersymmetric counterpart, JHEP 07 (2015) 043 [arXiv:1503.05537] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    N. Bobev, M. Bullimore and H.-C. Kim, Supersymmetric Casimir energy and the anomaly polynomial, JHEP 09 (2015) 142 [arXiv:1507.08553] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  21. [21]
    J. Markeviciute and J.E. Santos, Evidence for the existence of a novel class of supersymmetric black holes with AdS 5×S 5 asymptotics, arXiv:1806.01849 [INSPIRE].
  22. [22]
    J.L. Blázquez-Salcedo, J. Kunz, F. Navarro-Lérida and E. Radu, New black holes in D = 5 minimal gauged supergravity: deformed boundaries and frozen horizons, Phys. Rev. D 97 (2018) 081502 [arXiv:1711.08292] [INSPIRE].ADSzbMATHGoogle Scholar
  23. [23]
    J.L. Blázquez-Salcedo, J. Kunz, F. Navarro-Lérida and E. Radu, Squashed, magnetized black holes in D = 5 minimal gauged supergravity, JHEP 02 (2018) 061 [arXiv:1711.10483] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    K. Murata, T. Nishioka and N. Tanahashi, Warped AdS 5 black holes and dual CFTs, Prog. Theor. Phys. 121 (2009) 941 [arXiv:0901.2574] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    D. Cassani and D. Martelli, The gravity dual of supersymmetric gauge theories on a squashed S 1 × S 3, JHEP 08 (2014) 044 [arXiv:1402.2278] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Günaydin, G. Sierra and P.K. Townsend, Gauging the d = 5 Maxwell-Einstein supergravity theories: more on Jordan algebras, Nucl. Phys. B 253 (1985) 573 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    M. Günaydin, G. Sierra and P.K. Townsend, The geometry of N = 2 Maxwell-Einstein supergravity and Jordan algebras, Nucl. Phys. B 242 (1984) 244 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    E.O. Colgáin et al., Warped Ricci-flat reductions, Phys. Rev. D 90 (2014) 045013 [arXiv:1406.6354] [INSPIRE].ADSGoogle Scholar
  30. [30]
    P. Figueras, C.A.R. Herdeiro and F. Paccetti Correia, On a class of 4D Kähler bases and AdS 5 supersymmetric black holes, JHEP 11 (2006) 036 [hep-th/0608201] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Cassani, J. Lorenzen and D. Martelli, Comments on supersymmetric solutions of minimal gauged supergravity in five dimensions, Class. Quant. Grav. 33 (2016) 115013 [arXiv:1510.01380] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    D.N. Page, Classical stability of round and squashed seven spheres in eleven-dimensional supergravity, Phys. Rev. D 28 (1983) 2976 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  33. [33]
    A. Ashtekar and S. Das, Asymptotically Anti-de Sitter space-times: conserved quantities, Class. Quant. Grav. 17 (2000) L17 [hep-th/9911230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    D. Martelli and W. Mueck, Holographic renormalization and Ward identities with the Hamilton-Jacobi method, Nucl. Phys. B 654 (2003) 248 [hep-th/0205061] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge, U.K. (2012).CrossRefzbMATHGoogle Scholar
  42. [42]
    K. Kikuchi and T. Sakai, AdS/CFT and local renormalization group with gauge fields, PTEP 2016 (2016) 033B02 [arXiv:1511.00403] [INSPIRE].
  43. [43]
    O.S. An, Anomaly-corrected supersymmetry algebra and supersymmetric holographic renormalization, JHEP 12 (2017) 107 [arXiv:1703.09607] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    K. Behrndt, M. Cvetič and W.A. Sabra, Nonextreme black holes of five-dimensional N = 2 AdS supergravity, Nucl. Phys. B 553 (1999) 317 [hep-th/9810227] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    A. Batrachenko, J.T. Liu, R. McNees, W.A. Sabra and W.Y. Wen, Black hole mass and Hamilton-Jacobi counterterms, JHEP 05 (2005) 034 [hep-th/0408205] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, The holographic supersymmetric Casimir energy, Phys. Rev. D 95 (2017) 021902 [arXiv:1606.02724] [INSPIRE].ADSzbMATHGoogle Scholar
  47. [47]
    P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, Holographic renormalization and supersymmetry, JHEP 02 (2017) 132 [arXiv:1612.06761] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    I. Papadimitriou, Supercurrent anomalies in 4d SCFTs, JHEP 07 (2017) 038 [arXiv:1703.04299] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    D. Cassani and D. Martelli, Supersymmetry on curved spaces and superconformal anomalies, JHEP 10 (2013) 025 [arXiv:1307.6567] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    B. Assel, D. Cassani and D. Martelli, Supersymmetric counterterms from new minimal supergravity, JHEP 11 (2014) 135 [arXiv:1410.6487] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    D. Marolf, Chern-Simons terms and the three notions of charge, in the proceedings of Quantization, gauge theory and strings. Proceedings, International Conference dedicated to the memory of ProfeSSOR Efim Fradkin, June 5–10, Moscow, Russia (2000), hep-th/0006117 [INSPIRE].
  52. [52]
    J.T. Liu and W.A. Sabra, Mass in anti-de Sitter spaces, Phys. Rev. D 72 (2005) 064021 [hep-th/0405171] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    S. Kim and K.-M. Lee, 1/16-BPS black holes and giant gravitons in the AdS 5 × S 5 space, JHEP 12 (2006) 077 [hep-th/0607085] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  54. [54]
    S.M. Hosseini, K. Hristov and A. Zaffaroni, A note on the entropy of rotating BPS AdS 7 × S 4 black holes, JHEP 05 (2018) 121 [arXiv:1803.07568] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    A. Cabo-Bizet, D. Cassani, D. Martelli and S. Murthy, Microscopic origin of the Bekenstein-Hawking entropy of supersymmetric AdS 5 black holes, arXiv:1810.11442 [INSPIRE].
  56. [56]
    M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, Rotating black holes in gauged supergravities: thermodynamics, supersymmetric limits, topological solitons and time machines, hep-th/0504080 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.INFN — Sezione di PadovaPadovaItaly
  2. 2.Dipartimento di Fisica e Astronomia “Galileo Galilei”PadovaItaly

Personalised recommendations