Advertisement

Journal of High Energy Physics

, 2018:36 | Cite as

Collider probes of singlet fermionic dark matter scenarios for the Fermi gamma-ray excess

  • Yeong Gyun Kim
  • Chan Beom ParkEmail author
  • Seodong ShinEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We investigate the collider signatures of three benchmark points in the singlet fermionic dark matter model motivated by the Fermi gamma-ray excess at the Galactic center. The benchmark points are classified according to the final state of the main dark annihilation process: a pair of b quarks, Higgs bosons and new scalar bosons. Since the dark sector in the model communicates with the visible sector through a mixing between the new scalar and the Higgs boson, collider observables related to the measurements of Higgs boson properties and searches for the new scalar boson are essential to probe the benchmark scenarios at colliders. In this paper, we consider four collider observables: (1) Higgs signal strength (essentially hZZ coupling), (2) triple Higgs coupling, (3) exotic Higgs decay, and (4) direct production of the new scalar particle. We find that the benchmark points have distinctive collider signatures that can be well tested by the interplay of future lepton and hadron colliders.

Keywords

Beyond Standard Model Higgs Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Goodenough and D. Hooper, Possible evidence for dark matter annihilation in the inner Milky Way from the Fermi gamma ray space telescope, arXiv:0910.2998 [INSPIRE].
  2. [2]
    D. Hooper and L. Goodenough, Dark matter annihilation in the galactic center as seen by the Fermi gamma ray space telescope, Phys. Lett. B 697 (2011) 412 [arXiv:1010.2752] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    D. Hooper and T. Linden, On the origin of the gamma rays from the galactic center, Phys. Rev. D 84 (2011) 123005 [arXiv:1110.0006] [INSPIRE].Google Scholar
  4. [4]
    K.N. Abazajian and M. Kaplinghat, Detection of a gamma-ray source in the galactic center consistent with extended emission from dark matter annihilation and concentrated astrophysical emission, Phys. Rev. D 86 (2012) 083511 [Erratum ibid. D 87 (2013) 129902] [arXiv:1207.6047] [INSPIRE].
  5. [5]
    D. Hooper and T.R. Slatyer, Two emission mechanisms in the Fermi bubbles: a possible signal of annihilating dark matter, Phys. Dark Univ. 2 (2013) 118 [arXiv:1302.6589] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    C. Gordon and O. Macias, Dark matter and pulsar model constraints from galactic center Fermi-LAT gamma ray observations, Phys. Rev. D 88 (2013) 083521 [Erratum ibid. D 89 (2014) 049901] [arXiv:1306.5725] [INSPIRE].
  7. [7]
    W.-C. Huang, A. Urbano and W. Xue, Fermi bubbles under dark matter scrutiny. Part I: astrophysical analysis, arXiv:1307.6862 [INSPIRE].
  8. [8]
    K.N. Abazajian, N. Canac, S. Horiuchi and M. Kaplinghat, Astrophysical and dark matter interpretations of extended gamma-ray emission from the galactic center, Phys. Rev. D 90 (2014) 023526 [arXiv:1402.4090] [INSPIRE].Google Scholar
  9. [9]
    T. Daylan et al., The characterization of the gamma-ray signal from the central Milky Way: a case for annihilating dark matter, Phys. Dark Univ. 12 (2016) 1 [arXiv:1402.6703] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    F. Calore, I. Cholis and C. Weniger, Background model systematics for the Fermi GeV excess, JCAP 03 (2015) 038 [arXiv:1409.0042] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    F. Calore, I. Cholis, C. McCabe and C. Weniger, A tale of tails: dark matter interpretations of the Fermi GeV excess in light of background model systematics, Phys. Rev. D 91 (2015) 063003 [arXiv:1411.4647] [INSPIRE].Google Scholar
  12. [12]
    Fermi-LAT collaboration, M. Ajello et al., Fermi-LAT observations of high-energy γ-ray emission toward the galactic center, Astrophys. J. 819 (2016) 44 [arXiv:1511.02938] [INSPIRE].
  13. [13]
    Y.G. Kim, K.Y. Lee, C.B. Park and S. Shin, Secluded singlet fermionic dark matter driven by the Fermi gamma-ray excess, Phys. Rev. D 93 (2016) 075023 [arXiv:1601.05089] [INSPIRE].Google Scholar
  14. [14]
    Y.G. Kim, K.Y. Lee and S. Shin, Singlet fermionic dark matter, JHEP 05 (2008) 100 [arXiv:0803.2932] [INSPIRE].Google Scholar
  15. [15]
    Y.G. Kim and S. Shin, Singlet fermionic dark matter explains DAMA signal, JHEP 05 (2009) 036 [arXiv:0901.2609] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    M.A. Fedderke, J.-Y. Chen, E.W. Kolb and L.-T. Wang, The fermionic dark matter Higgs portal: an effective field theory approach, JHEP 08 (2014) 122 [arXiv:1404.2283] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    Fermi-LAT collaboration, M. Ackermann et al., Searching for dark matter annihilation from Milky Way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
  18. [18]
    PAMELA collaboration, O. Adriani et al., PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy, Phys. Rev. Lett. 105 (2010) 121101 [arXiv:1007.0821] [INSPIRE].
  19. [19]
    AMS collaboration, M. Aguilar et al., Antiproton flux, antiproton-to-proton flux ratio and properties of elementary particle fluxes in primary cosmic rays measured with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 117 (2016) 091103 [INSPIRE].
  20. [20]
    K. Fujii et al., Physics case for the International Linear Collider, arXiv:1506.05992 [INSPIRE].
  21. [21]
    J. Liu, X.-P. Wang and F. Yu, A tale of two portals: testing light, hidden new physics at future e + e colliders, JHEP 06 (2017) 077 [arXiv:1704.00730] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    K. Fujii et al., Physics case for the 250 GeV stage of the International Linear Collider, arXiv:1710.07621 [INSPIRE].
  23. [23]
    S. Di Vita et al., A global view on the Higgs self-coupling at lepton colliders, JHEP 02 (2018) 178 [arXiv:1711.03978] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    CMS collaboration, Projected performance of an upgraded CMS detector at the LHC and HL-LHC: contribution to the Snowmass process, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., 29 July–6 August 2013 [arXiv:1307.7135] [INSPIRE].
  25. [25]
    ATLAS collaboration, Projections for measurements of Higgs boson signal strengths and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2014-016, CERN, Geneva, Switzerland, (2014).
  26. [26]
    ATLAS collaboration, Study of the double Higgs production channel H(→ \( b\overline{b} \))H(→ γγ) with the ATLAS experiment at the HL-LHC, ATL-PHYS-PUB-2017-001, CERN, Geneva, Switzerland, (2017).
  27. [27]
    H.-J. He, J. Ren and W. Yao, Probing new physics of cubic Higgs boson interaction via Higgs pair production at hadron colliders, Phys. Rev. D 93 (2016) 015003 [arXiv:1506.03302] [INSPIRE].Google Scholar
  28. [28]
    R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies, CERN Yellow Report (2017) 255 [arXiv:1606.09408] [INSPIRE].
  29. [29]
    T. Barklow et al., Improved formalism for precision Higgs coupling fits, Phys. Rev. D 97 (2018) 053003 [arXiv:1708.08912] [INSPIRE].Google Scholar
  30. [30]
    ATLAS collaboration, Projections for measurements of Higgs boson cross sections, branching ratios and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2013-014, CERN, Geneva, Switzerland, (2013).
  31. [31]
    CMS collaboration, Search for new resonances in the diphoton final state in the mass range between 70 and 110 GeV in pp collisions at \( \sqrt{s}=8 \) and 13 TeV, CMS-PAS-HIG-17-013, CERN, Geneva, Switzerland, (2017).
  32. [32]
    D. Liu, J. Liu, C.E.M. Wagner and X.-P. Wang, A light Higgs at the LHC and the B-anomalies, JHEP 06 (2018) 150 [arXiv:1805.01476] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    OPAL, DELPHI, LEP Working Group for Higgs boson searches, ALEPH and L3 collaborations, R. Barate et al., Search for the Standard Model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].
  34. [34]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    P. Drechsel, G. Moortgat-Pick and G. Weiglein, Sensitivity of the ILC to light Higgs masses, in International Workshop on Future Linear Collider (LCWS2017), Strasbourg, France, 23–27 October 2017 [arXiv:1801.09662] [INSPIRE].
  36. [36]
    Y. Wang, J. List and M. Berggren, Search for light scalars produced in association with muon pairs for \( \sqrt{s} \) = 250 GeV at the ILC, in International Workshop on Future Linear Collider (LCWS2017), Strasbourg, France, 23–27 October 2017 [arXiv:1801.08164] [INSPIRE].
  37. [37]
    CMS collaboration, Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons, JHEP 10 (2015) 144 [arXiv:1504.00936] [INSPIRE].
  38. [38]
    ATLAS collaboration, Search for heavy ZZ resonances in the ℓ + + and \( {\ell}^{+}{\ell}^{-}\nu \overline{\nu} \) final states using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 293 [arXiv:1712.06386] [INSPIRE].
  39. [39]
    CMS collaboration, Search for a new scalar resonance decaying to a pair of Z bosons in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 06 (2018) 127 [arXiv:1804.01939] [INSPIRE].
  40. [40]
    CMS collaboration, 2HDM neutral Higgs future analysis studies, CMS-PAS-FTR-13-024, CERN, Geneva, Switzerland, (2013).
  41. [41]
    B. Dutta, Y. Gao, T. Ghosh and L.E. Strigari, Confronting galactic center and dwarf spheroidal gamma-ray observations with cascade annihilation models, Phys. Rev. D 92 (2015) 075019 [arXiv:1508.05989] [INSPIRE].Google Scholar
  42. [42]
    ATLAS collaboration, Search for the Higgs boson produced in association with a vector boson and decaying into two spin-zero particles in the Haa → 4b channel in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2018) 031 [arXiv:1806.07355] [INSPIRE].
  43. [43]
    D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].Google Scholar
  44. [44]
    Z. Liu, L.-T. Wang and H. Zhang, Exotic decays of the 125 GeV Higgs boson at future e + e lepton colliders, Chin. Phys. C 41 (2017) 063102 [arXiv:1612.09284] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Science EducationGwangju National University of EducationGwangjuKorea
  2. 2.Center for Theoretical Physics of the UniverseInstitute for Basic Science (IBS)DaejeonKorea
  3. 3.Enrico Fermi InstituteUniversity of ChicagoChicagoU.S.A.
  4. 4.Department of Physics and IPAPYonsei UniversitySeoulKorea

Personalised recommendations