Advertisement

Journal of High Energy Physics

, 2018:34 | Cite as

Large D gravity and charged membrane dynamics with nonzero cosmological constant

  • Suman Kundu
  • Poulami NandiEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper, we have found a class of dynamical charged ‘black-hole’ solutions to Einstein-Maxwell system with a non-zero cosmological constant in a large number of spacetime dimensions. We have solved up to the first sub-leading order using large D scheme where the inverse of the number of dimensions serves as the perturbation parameter. The system is dual to a dynamical membrane with a charge and a velocity field, living on it. The dual membrane has to be embedded in a background geometry that itself, satisfies the pure gravity equation in presence of a cosmological constant. Pure AdS / dS are particular examples of such background. We have also obtained the membrane equations governing the dynamics of charged membrane. The consistency of our membrane equations is checked by calculating the quasi-normal modes with different Einstein-Maxwell System in AdS/dS.

Keywords

Black Holes Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Emparan, R. Suzuki and K. Tanabe, Decoupling and non-decoupling dynamics of large D black holes, JHEP 07 (2014) 113 [arXiv:1406.1258] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    R. Emparan, R. Suzuki and K. Tanabe, The large D limit of General Relativity, JHEP 06 (2013) 009 [arXiv:1302.6382] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. Emparan, D. Grumiller and K. Tanabe, Large-D gravity and low-D strings, Phys. Rev. Lett. 110 (2013) 251102 [arXiv:1303.1995] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R. Emparan and K. Tanabe, Holographic superconductivity in the large D expansion, JHEP 01 (2014) 145 [arXiv:1312.1108] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    R. Emparan and K. Tanabe, Universal quasinormal modes of large D black holes, Phys. Rev. D 89 (2014) 064028 [arXiv:1401.1957] [INSPIRE].ADSGoogle Scholar
  6. [6]
    R. Emparan, R. Suzuki and K. Tanabe, Instability of rotating black holes: large D analysis, JHEP 06 (2014) 106 [arXiv:1402.6215] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    P. Dominis Prester, Small black holes in the large D limit, JHEP 06 (2013) 070 [arXiv:1304.7288] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    S. Bhattacharyya, A. De, S. Minwalla, R. Mohan and A. Saha, A membrane paradigm at large D, JHEP 04 (2016) 076 [arXiv:1504.06613] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    S. Bhattacharyya, M. Mandlik, S. Minwalla and S. Thakur, A Charged Membrane Paradigm at Large D, JHEP 04 (2016) 128 [arXiv:1511.03432] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  10. [10]
    Y. Dandekar, A. De, S. Mazumdar, S. Minwalla and A. Saha, The large D black hole Membrane Paradigm at first subleading order, JHEP 12 (2016) 113 [arXiv:1607.06475] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    R. Emparan, T. Shiromizu, R. Suzuki, K. Tanabe and T. Tanaka, Effective theory of Black Holes in the 1/D expansion, JHEP 06 (2015) 159 [arXiv:1504.06489] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    R. Suzuki and K. Tanabe, Stationary black holes: Large D analysis, JHEP 09 (2015) 193 [arXiv:1505.01282] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    R. Emparan, R. Suzuki and K. Tanabe, Evolution and End Point of the Black String Instability: Large D Solution, Phys. Rev. Lett. 115 (2015) 091102 [arXiv:1506.06772] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Tanabe, Black rings at large D, JHEP 02 (2016) 151 [arXiv:1510.02200] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    K. Tanabe, Instability of the de Sitter Reissner-Nordstrom black hole in the 1/D expansion, Class. Quant. Grav. 33 (2016) 125016 [arXiv:1511.06059] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    R. Suzuki and K. Tanabe, Non-uniform black strings and the critical dimension in the 1/D expansion, JHEP 10 (2015) 107 [arXiv:1506.01890] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    R. Emparan, R. Suzuki and K. Tanabe, Quasinormal modes of (Anti-)de Sitter black holes in the 1/D expansion, JHEP 04 (2015) 085 [arXiv:1502.02820] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    R. Emparan, K. Izumi, R. Luna, R. Suzuki and K. Tanabe, Hydro-elastic Complementarity in Black Branes at large D, JHEP 06 (2016) 117 [arXiv:1602.05752] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    A.M. García-García and A. Romero-Bermúdez, Conductivity and entanglement entropy of high dimensional holographic superconductors, JHEP 09 (2015) 033 [arXiv:1502.03616] [INSPIRE].
  20. [20]
    K. Tanabe, Charged rotating black holes at large D, arXiv:1605.08854 [INSPIRE].
  21. [21]
    A. Sadhu and V. Suneeta, Nonspherically symmetric black string perturbations in the large dimension limit, Phys. Rev. D 93 (2016) 124002 [arXiv:1604.00595] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    C.P. Herzog, M. Spillane and A. Yarom, The holographic dual of a Riemann problem in a large number of dimensions, JHEP 08 (2016) 120 [arXiv:1605.01404] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    M. Rozali and A. Vincart-Emard, On Brane Instabilities in the Large D Limit, JHEP 08 (2016) 166 [arXiv:1607.01747] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    B. Chen, Z.-Y. Fan, P. Li and W. Ye, Quasinormal modes of Gauss-Bonnet black holes at large D, JHEP 01 (2016) 085 [arXiv:1511.08706] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    B. Chen and P.-C. Li, Instability of Charged Gauss-Bonnet Black Hole in de Sitter Spacetime at Large D, arXiv:1607.04713 [INSPIRE].
  26. [26]
    B. Chen and P.-C. Li, Static Gauss-Bonnet Black Holes at Large D, JHEP 05 (2017) 025 [arXiv:1703.06381] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  27. [27]
    B. Chen, P.-C. Li and Z.-z. Wang, Charged Black Rings at large D, JHEP 04 (2017) 167 [arXiv:1702.00886] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  28. [28]
    R.A. Konoplya and A. Zhidenko, Instability of D-dimensional extremally charged Reissner-Nordstrom(-de Sitter) black holes: Extrapolation to arbitrary D, Phys. Rev. D 89 (2014) 024011 [arXiv:1309.7667] [INSPIRE].ADSGoogle Scholar
  29. [29]
    E.-D. Guo, M. Li and J.-R. Sun, CFT dual of charged AdS black hole in the large dimension limit, Int. J. Mod. Phys. D 25 (2016) 1650085 [arXiv:1512.08349] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    B. Chen, P.-C. Li and C.-Y. Zhang, Einstein-Gauss-Bonnet Black Strings at Large D, JHEP 10 (2017) 123 [arXiv:1707.09766] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    C.P. Herzog and Y. Kim, The Large Dimension Limit of a Small Black Hole Instability in Anti-de Sitter Space, JHEP 02 (2018) 167 [arXiv:1711.04865] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    S. Bhattacharyya et al., Currents and Radiation from the large D Black Hole Membrane, JHEP 05 (2017) 098 [arXiv:1611.09310] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    Y. Dandekar, S. Mazumdar, S. Minwalla and A. Saha, Unstableblack branesfrom scaled membranes at large D, JHEP 12 (2016) 140 [arXiv:1609.02912] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    Y. Dandekar, S. Kundu, S. Mazumdar, S. Minwalla, A. Mishra and A. Saha, An Action for and Hydrodynamics from the improved Large D membrane, JHEP 09 (2018) 137 [arXiv:1712.09400] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    S. Bhattacharyya, P. Biswas, B. Chakrabarty, Y. Dandekar and A. Dinda, The large D black hole dynamics in AdS/dS backgrounds, JHEP 10 (2018) 033 [arXiv:1704.06076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    S. Bhattacharyya, P. Biswas and Y. Dandekar, Black holes in presence of cosmological constant: second order in \( \frac{1}{D} \) , JHEP 10 (2018) 171 [arXiv:1805.00284] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    A. Saha, The large D Membrane Paradigm For Einstein-Gauss-Bonnet Gravity, arXiv:1806.05201 [INSPIRE].
  38. [38]
    B. Chen, P.-C. Li, Y. Tian and C.-Y. Zhang, Holographic Turbulence in Einstein-Gauss-Bonnet Gravity at Large D, arXiv:1804.05182 [INSPIRE].
  39. [39]
    S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma, Conformal Nonlinear Fluid Dynamics from Gravity in Arbitrary Dimensions, JHEP 12 (2008) 116 [arXiv:0809.4272] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    R.M. Wald, General Relativity, University of Chicago Press (1984) [INSPIRE].
  41. [41]
    M. Mandlik and S. Thakur, Stationary Solutions from the Large D Membrane Paradigm, JHEP 11 (2018) 026 [arXiv:1806.04637] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsTata Institute of Fundamental ResearchMumbaiIndia
  2. 2.Department of PhysicsIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations