Advertisement

Journal of High Energy Physics

, 2018:33 | Cite as

On the structure of the conformal higher-spin wave operators

  • Maxim GrigorievEmail author
  • Aliaksandr Hancharuk
Open Access
Regular Article - Theoretical Physics

Abstract

We study conformal higher spin (CHS) fields on constant curvature backgrounds. By employing parent formulation technique in combination with tractor description of GJMS operators we find a manifestly factorized form of the CHS wave operators for symmetric fields of arbitrary integer spin s and gauge invariance of arbitrary order ts. In the case of the usual Fradkin-Tseytlin fields t = 1 this gives a systematic derivation of the factorization formulas known in the literature while for t > 1 the explicit formulas were not known. We also relate the gauge invariance of the CHS fields to the partially-fixed gauge invariance of the factors and show that the factors can be identified with (partially gauge-fixed) wave operators for (partially)-massless or special massive fields. As a byproduct, we establish a detailed relationship with the tractor approach and, in particular, derive the tractor form of the CHS equations and gauge symmetries.

Keywords

Conformal Field Theory Gauge Symmetry AdS-CFT Correspondence Higher Spin Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E.S. Fradkin and A.A. Tseytlin, Conformal Supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A.Y. Segal, Conformal higher spin theory, Nucl. Phys. B 664 (2003) 59 [hep-th/0207212] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A.A. Tseytlin, On limits of superstring in AdS 5 × S 5, Theor. Math. Phys. 133 (2002) 1376 [hep-th/0201112] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    X. Bekaert, E. Joung and J. Mourad, Effective action in a higher-spin background, JHEP 02 (2011) 048 [arXiv:1012.2103] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R. Bonezzi, Induced Action for Conformal Higher Spins from Worldline Path Integrals, Universe 3 (2017) 64 [arXiv:1709.00850] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    R.R. Metsaev, Shadows, currents and AdS, Phys. Rev. D 78 (2008) 106010 [arXiv:0805.3472] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    R.R. Metsaev, Gauge invariant two-point vertices of shadow fields, AdS/CFT and conformal fields, Phys. Rev. D 81 (2010) 106002 [arXiv:0907.4678] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    X. Bekaert and M. Grigoriev, Notes on the ambient approach to boundary values of AdS gauge fields, J. Phys. A 46 (2013) 214008 [arXiv:1207.3439] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    X. Bekaert and M. Grigoriev, Higher order singletons, partially massless fields and their boundary values in the ambient approach, Nucl. Phys. B 876 (2013) 667 [arXiv:1305.0162] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A.A. Tseytlin, On partition function and Weyl anomaly of conformal higher spin fields, Nucl. Phys. B 877 (2013) 598 [arXiv:1309.0785] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    R.R. Metsaev, Ordinary-derivative formulation of conformal low spin fields, JHEP 01 (2012) 064 [arXiv:0707.4437] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    R.R. Metsaev, Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields, JHEP 06 (2012) 062 [arXiv:0709.4392] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    E. Joung and K. Mkrtchyan, A note on higher-derivative actions for free higher-spin fields, JHEP 11 (2012) 153 [arXiv:1209.4864] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    S. Deser and R.I. Nepomechie, Gauge Invariance Versus Masslessness in de Sitter Space, Annals Phys. 154 (1984) 396 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    S. Deser and A. Waldron, Gauge invariances and phases of massive higher spins in (A)dS, Phys. Rev. Lett. 87 (2001) 031601 [hep-th/0102166] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    R.R. Metsaev, Arbitrary spin conformal fields in (A)dS, Nucl. Phys. B 885 (2014) 734 [arXiv:1404.3712] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M. Beccaria and A.A. Tseytlin, On higher spin partition functions, J. Phys. A 48 (2015) 275401 [arXiv:1503.08143] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  18. [18]
    M. Beccaria and A.A. Tseytlin, Iterating free-field AdS/CFT: higher spin partition function relations, J. Phys. A 49 (2016) 295401 [arXiv:1602.00948] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  19. [19]
    T. Nutma and M. Taronna, On conformal higher spin wave operators, JHEP 06 (2014) 066 [arXiv:1404.7452] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, SIGMA 4 (2008) 036 [arXiv:0803.4331].MathSciNetzbMATHGoogle Scholar
  21. [21]
    E.S. Fradkin and A.A. Tseytlin, One Loop β-function in Conformal Supergravities, Nucl. Phys. B 203 (1982) 157 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    C.R. Graham, R. Jenne, L.J. Mason and G.A.J. Sparling, Conformally invariant powers of the laplacian, I: Existence, J. London Math. Soc. s2–46 (1992) 557.Google Scholar
  23. [23]
    A.R. Gover, Laplacian operators and Q-curvature on conformally Einstein manifolds, Math. Ann. 336 (2006) 311 [math.DG/0506037] [INSPIRE].
  24. [24]
    M.G. Eastwood, Notes on conformal differential geometry, Rend. Circ. Mat. Palermo S43 (1996) 57.MathSciNetzbMATHGoogle Scholar
  25. [25]
    T. Bailey, M.G. Eastwood and A. Gover, Thomass structure bundle for conformal, projective and related structures, Rocky Mt. J. Math. 24 (1994) 1191.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    A. Čap and A.R. Gover, Standard tractors and the conformal ambient metric construction, Annals Global Anal. Geom. 24 (2003) 231 [math/0207016] [INSPIRE].
  27. [27]
    R.R. Metsaev, Long, partial-short and special conformal fields, JHEP 05 (2016) 096 [arXiv:1604.02091] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    G. Barnich and M. Grigoriev, Parent form for higher spin fields on anti-de Sitter space, JHEP 08 (2006) 013 [hep-th/0602166] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    X. Bekaert and M. Grigoriev, Manifestly conformal descriptions and higher symmetries of bosonic singletons, SIGMA 6 (2010) 038 [arXiv:0907.3195] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  30. [30]
    G. Barnich and M. Grigoriev, First order parent formulation for generic gauge field theories, JHEP 01 (2011) 122 [arXiv:1009.0190] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    M. Grigoriev, Parent formulations, frame-like Lagrangians and generalized auxiliary fields, JHEP 12 (2012) 048 [arXiv:1204.1793] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    G. Barnich, M. Grigoriev, A. Semikhatov and I. Tipunin, Parent field theory and unfolding in BRST first-quantized terms, Commun. Math. Phys. 260 (2005) 147 [hep-th/0406192] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    M. Grigoriev and A. Waldron, Massive Higher Spins from BRST and Tractors, Nucl. Phys. B 853 (2011) 291 [arXiv:1104.4994] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    A.R. Gover, A. Shaukat and A. Waldron, Tractors, Mass and Weyl Invariance, Nucl. Phys. B 812 (2009) 424 [arXiv:0810.2867] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    P.A.M. Dirac, Wave equations in conformal space, Annals Math. 37 (1936) 429 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    A.R. Gover and L.J. Peterson, Conformally invariant powers of the Laplacian, Q-curvature and tractor calculus, Commun. Math. Phys. 235 (2003) 339 [math-ph/0201030] [INSPIRE].
  37. [37]
    C. Fefferman and C. Graham, Conformal Invariants, Astérisque Hors série (1985) 95.Google Scholar
  38. [38]
    C. Fefferman and C.R. Graham, The ambient metric, Ann. Math. Stud. 178 (2011) 1 [arXiv:0710.0919] [INSPIRE].Google Scholar
  39. [39]
    X. Bekaert, M. Grigoriev and E.D. Skvortsov, Higher Spin Extension of Fefferman-Graham Construction, Universe 4 (2018) 17 [arXiv:1710.11463] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    B.V. Fedosov, A Simple geometrical construction of deformation quantization, J. Diff. Geom. 40 (1994) 213 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    B.V. Fedosov, Deformation quantization and index theory, Mathematical Topics Series, volume 9, Akademie Verlag, Berlin Germany (1996) [INSPIRE].
  42. [42]
    M. Grigoriev, Off-shell gauge fields from BRST quantization, hep-th/0605089 [INSPIRE].
  43. [43]
    M. Grigoriev and A.A. Tseytlin, On conformal higher spins in curved background, J. Phys. A 50 (2017) 125401 [arXiv:1609.09381] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  44. [44]
    C.R. LeBrun, Ambi-twistors and Einsteins equations, Class. Quant. Grav. 2 (1985) 555.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    M. Beccaria and A.A. Tseytlin, On induced action for conformal higher spins in curved background, Nucl. Phys. B 919 (2017) 359 [arXiv:1702.00222] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    M.S. Drew and J.D. Gegenberg, Conformally covariant massless spin-2 field equations, Nuovo Cim. A 60 (1980) 41 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    A.O. Barut and B.-W. Xu, On conformally covariant spin-2 and spin 3/2 equations, J. Phys. A 15 (1982) L207 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  48. [48]
    J. Erdmenger and H. Osborn, Conformally covariant differential operators: Symmetric tensor fields, Class. Quant. Grav. 15 (1998) 273 [gr-qc/9708040] [INSPIRE].
  49. [49]
    M.A. Vasiliev, Bosonic conformal higher-spin fields of any symmetry, Nucl. Phys. B 829 (2010) 176 [arXiv:0909.5226] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    A. Chekmenev and M. Grigoriev, Boundary values of mixed-symmetry massless fields in AdS space, Nucl. Phys. B 913 (2016) 769 [arXiv:1512.06443] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    K. Alkalaev and M. Grigoriev, Unified BRST approach to (partially) massless and massive AdS fields of arbitrary symmetry type, Nucl. Phys. B 853 (2011) 663 [arXiv:1105.6111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    K.B. Alkalaev and M. Grigoriev, Unified BRST description of AdS gauge fields, Nucl. Phys. B 835 (2010) 197 [arXiv:0910.2690] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    M.G. Eastwood and M. Singer, A conformally invariant Maxwell gauge, Phys. Lett. A 107 (1985) 73 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    L. Dolan, C.R. Nappi and E. Witten, Conformal operators for partially massless states, JHEP 10 (2001) 016 [hep-th/0109096] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    E.D. Skvortsov and M.A. Vasiliev, Transverse Invariant Higher Spin Fields, Phys. Lett. B 664 (2008) 301 [hep-th/0701278] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    A. Campoleoni and D. Francia, Maxwell-like Lagrangians for higher spins, JHEP 03 (2013) 168 [arXiv:1206.5877] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Tamm Department of Theoretical PhysicsLebedev Physical InstituteMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations