Journal of High Energy Physics

, 2018:32 | Cite as

Do we live in the swampland?

  • Hitoshi Murayama
  • Masahito YamazakiEmail author
  • Tsutomu T. Yanagida
Open Access
Regular Article - Theoretical Physics


A low-energy effective theory is said to be in the swampland if it does not have any consistent UV completion inside a theory of quantum gravity. The natural question is if the standard model of particle physics, possibly with some minimal extensions, are in the swampland — we are in trouble if the answer to this question is yes. We discuss this question in view of the recent swampland conjectures. We prove a no-go theorem concerning the modification of the Higgs sector. Moreover, we find that QCD axion is incompatible with the recent swampland conjectures, unless some sophisticated possibilities are considered. We discuss the implications of this result for spontaneous breaking of CP symmetry. We comment on dynamical supersymmetry breaking as well as the issue of multi-valuedness of the potential. We also propose a refinement of the de Sitter swampland conjecture.


Compactification and String Models Superstring Vacua 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE].
  2. [2]
    H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].
  3. [3]
    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].
  5. [5]
    S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    F. Wilczek, Problem of strong P and T invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, De Sitter space and the swampland, arXiv:1806.08362 [INSPIRE].
  8. [8]
    P. Agrawal, G. Obied, P.J. Steinhardt and C. Vafa, On the cosmological implications of the string swampland, Phys. Lett. B 784 (2018) 271 [arXiv:1806.09718] [INSPIRE].
  9. [9]
    F. Denef, A. Hebecker and T. Wrase, De Sitter swampland conjecture and the Higgs potential, Phys. Rev. D 98 (2018) 086004 [arXiv:1807.06581] [INSPIRE].
  10. [10]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    H. Ooguri and C. Vafa, Non-supersymmetric AdS and the Swampland, Adv. Theor. Math. Phys. 21 (2017) 1787 [arXiv:1610.01533] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    T.D. Brennan, F. Carta and C. Vafa, The string landscape, the swampland and the missing corner, PoS(TASI2017)015 [arXiv:1711.00864] [INSPIRE].
  13. [13]
    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary constraints on type IIA string theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    T. Wrase and M. Zagermann, On classical de Sitter vacua in string theory, Fortsch. Phys. 58 (2010)906 [arXiv:1003.0029] [INSPIRE].
  15. [15]
    U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys. D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].
  16. [16]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].
  17. [17]
    J. McOrist and S. Sethi, M-theory and type IIA flux compactifications, JHEP 12 (2012) 122 [arXiv:1208.0261] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    S. Sethi, Supersymmetry breaking by fluxes, JHEP 10 (2018) 022 [arXiv:1709.03554] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    B. Ratra and P.J.E. Peebles, Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev. D 37 (1988) 3406 [INSPIRE].
  20. [20]
    C. Wetterich, Cosmology and the fate of dilatation symmetry, Nucl. Phys. B 302 (1988) 668 [arXiv:1711.03844] [INSPIRE].
  21. [21]
    I. Zlatev, L.-M. Wang and P.J. Steinhardt, Quintessence, cosmic coincidence and the cosmological constant, Phys. Rev. Lett. 82 (1999) 896 [astro-ph/9807002] [INSPIRE].
  22. [22]
    S. Tsujikawa, Quintessence: a review, Class. Quant. Grav. 30 (2013) 214003 [arXiv:1304.1961] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    C.-I. Chiang and H. Murayama, Building supergravity quintessence model, arXiv:1808.02279 [INSPIRE].
  24. [24]
    N. Arkani-Hamed, L.J. Hall, C.F. Kolda and H. Murayama, A New perspective on cosmic coincidence problems, Phys. Rev. Lett. 85 (2000) 4434 [astro-ph/0005111] [INSPIRE].
  25. [25]
    E. Witten, Some properties of O(32) superstrings, Phys. Lett. B 149 (1984) 351.Google Scholar
  26. [26]
    P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    P. Di Vecchia and G. Veneziano, Chiral dynamics in the large N limit, Nucl. Phys. B 171 (1980) 253 [INSPIRE].
  28. [28]
    E. Witten, Large N chiral dynamics, Annals Phys. 128 (1980) 363 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP 01 (2016) 034 [arXiv:1511.02867] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    P. Di Vecchia, G. Rossi, G. Veneziano and S. Yankielowicz, Spontaneous CP breaking in QCD and the axion potential: an effective Lagrangian approach, JHEP 12 (2017) 104 [arXiv:1709.00731] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    T.W. Grimm, E. Palti and I. Valenzuela, Infinite distances in field space and massless towers of states, JHEP 08 (2018) 143 [arXiv:1802.08264] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    B. Heidenreich, M. Reece and T. Rudelius, Emergence of weak coupling at large distance in quantum gravity, Phys. Rev. Lett. 121 (2018) 051601 [arXiv:1802.08698] [INSPIRE].
  33. [33]
    R. Blumenhagen, Large field inflation/quintessence and the refined swampland distance conjecture, PoS(CORFU2017)175 [arXiv:1804.10504] [INSPIRE].
  34. [34]
    S.-J. Lee, W. Lerche and T. Weigand, Tensionless strings and the weak gravity conjecture, JHEP 10 (2018) 164 [arXiv:1808.05958] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    B. Heidenreich, M. Reece and T. Rudelius, Sharpening the weak gravity conjecture with dimensional reduction, JHEP 02 (2016) 140 [arXiv:1509.06374] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    B. Heidenreich, M. Reece and T. Rudelius, Evidence for a sublattice weak gravity conjecture, JHEP 08 (2017) 025 [arXiv:1606.08437] [INSPIRE].
  37. [37]
    D. Harlow, Wormholes, emergent gauge fields and the weak gravity conjecture, JHEP 01 (2016)122 [arXiv:1510.07911] [INSPIRE].
  38. [38]
    C. Cheung and G.N. Remmen, Naturalness and the weak gravity conjecture, Phys. Rev. Lett. 113 (2014) 051601 [arXiv:1402.2287] [INSPIRE].
  39. [39]
    M. Montero, G. Shiu and P. Soler, The weak gravity conjecture in three dimensions, JHEP 10 (2016)159 [arXiv:1606.08438] [INSPIRE].
  40. [40]
    A.R. Liddle, A. Mazumdar and F.E. Schunck, Assisted inflation, Phys. Rev. D 58 (1998) 061301 [astro-ph/9804177] [INSPIRE].
  41. [41]
    E.J. Copeland, A. Mazumdar and N.J. Nunes, Generalized assisted inflation, Phys. Rev. D 60 (1999)083506 [astro-ph/9904309] [INSPIRE].
  42. [42]
    S. Dimopoulos, S. Kachru, J. McGreevy and J.G. Wacker, N-flation, JCAP 08 (2008) 003 [hep-th/0507205] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP 01 (2005) 005 [hep-ph/0409138] [INSPIRE].
  44. [44]
    T. Rudelius, Constraints on axion inflation from the weak gravity conjecture, JCAP 09 (2015)020 [arXiv:1503.00795] [INSPIRE].
  45. [45]
    M. Montero, A.M. Uranga and I. Valenzuela, Transplanckian axions!?, JHEP 08 (2015) 032 [arXiv:1503.03886] [INSPIRE].
  46. [46]
    J. Brown, W. Cottrell, G. Shiu and P. Soler, Fencing in the swampland: quantum gravity constraints on large field inflation, JHEP 10 (2015) 023 [arXiv:1503.04783] [INSPIRE].
  47. [47]
    B. Heidenreich, M. Reece and T. Rudelius, Weak gravity strongly constrains large-field axion inflation, JHEP 12 (2015) 108 [arXiv:1506.03447] [INSPIRE].
  48. [48]
    M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].
  49. [49]
    T.A. Wagner, S. Schlamminger, J.H. Gundlach and E.G. Adelberger, Torsion-balance tests of the weak equivalence principle, Class. Quant. Grav. 29 (2012) 184002 [arXiv:1207.2442] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    V.A. Rubakov, Grand unification and heavy axion, JETP Lett. 65 (1997) 621 [hep-ph/9703409] [INSPIRE].
  51. [51]
    Z. Berezhiani, L. Gianfagna and M. Giannotti, Strong CP problem and mirror world: the Weinberg-Wilczek axion revisited, Phys. Lett. B 500 (2001) 286 [hep-ph/0009290] [INSPIRE].
  52. [52]
    A. Hook, Anomalous solutions to the strong CP problem, Phys. Rev. Lett. 114 (2015) 141801 [arXiv:1411.3325] [INSPIRE].
  53. [53]
    H. Fukuda, K. Harigaya, M. Ibe and T.T. Yanagida, Model of visible QCD axion, Phys. Rev. D 92 (2015) 015021 [arXiv:1504.06084] [INSPIRE].
  54. [54]
    D. Andriot, On the de Sitter swampland criterion, Phys. Lett. B 785 (2018) 570 [arXiv:1806.10999] [INSPIRE].
  55. [55]
    L. Aalsma, M. Tournoy, J.P. Van Der Schaar and B. Vercnocke, Supersymmetric embedding of antibrane polarization, Phys. Rev. D 98 (2018) 086019 [arXiv:1807.03303] [INSPIRE].
  56. [56]
    S.K. Garg and C. Krishnan, Bounds on slow roll and the de Sitter swampland, arXiv:1807.05193 [INSPIRE].
  57. [57]
    C. Roupec and T. Wrase, De Sitter extrema and the swampland, Fortsch. Phys. 2018 (2018)1800082 [arXiv:1807.09538] [INSPIRE].
  58. [58]
    D. Andriot, New constraints on classical de Sitter: flirting with the swampland, arXiv:1807.09698 [INSPIRE].
  59. [59]
    L. Heisenberg, M. Bartelmann, R. Brandenberger and A. Refregier, Dark energy in the swampland, arXiv:1808.02877 [INSPIRE].
  60. [60]
    J.P. Conlon, The de Sitter swampland conjecture and supersymmetric AdS vacua, Int. J. Mod. Phys. A 33 (2018) 1850178 [arXiv:1808.05040] [INSPIRE].
  61. [61]
    K. Dasgupta, M. Emelin, E. McDonough and R. Tatar, Quantum corrections and the de Sitter swampland conjecture, arXiv:1808.07498 [INSPIRE].
  62. [62]
    S. Kachru and S.P. Trivedi, A comment on effective field theories of flux vacua, arXiv:1808.08971 [INSPIRE].
  63. [63]
    M. Cicoli, S. De Alwis, A. Maharana, F. Muia and F. Quevedo, De Sitter vs quintessence in string theory, Fortsch. Phys. 2018 (2018) 1800079 [arXiv:1808.08967] [INSPIRE].MathSciNetGoogle Scholar
  64. [64]
    Y. Akrami, R. Kallosh, A. Linde and V. Vardanyan, The landscape, the swampland and the era of precision cosmology, Fortsch. Phys. 2018 (2018) 1800075 [arXiv:1808.09440] [INSPIRE].Google Scholar
  65. [65]
    T. Banks, Y. Nir and N. Seiberg, Missing (up) mass, accidental anomalous symmetries and the strong CP problem, in the proceedings of Yukawa couplings and the origins of mass. 2nd IFT Workshop, February 11-13, Gainesville, U.S.A. (1994), hep-ph/9403203 [INSPIRE].
  66. [66]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 74 (2014) 2890 [arXiv:1310.8555] [INSPIRE].
  67. [67]
    M. Dine, P. Draper and G. Festuccia, Instanton effects in three flavor QCD, Phys. Rev. D 92 (2015)054004 [arXiv:1410.8505] [INSPIRE].
  68. [68]
    J. Frison, R. Kitano and N. Yamada, N f = 1 + 2 mass dependence of the topological susceptibility, PoS LATTICE2016 (2016) 323 [arXiv:1611.07150] [INSPIRE].
  69. [69]
    A.E. Nelson, Naturallyl weak CP violation, Phys. Lett. B 136 (1984) 387.Google Scholar
  70. [70]
    S.M. Barr, Solving the strong CP problem without the Peccei-Quinn symmetry, Phys. Rev. Lett. 53 (1984) 329 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Masiero and T. Yanagida, Real CP-violation, hep-ph/9812225 [INSPIRE].
  72. [72]
    J.L. Evans et al., Hermitian flavor violation, Phys. Lett. B 703 (2011) 599 [arXiv:1106.1734] [INSPIRE].
  73. [73]
    A. Strominger and E. Witten, New manifolds for superstring compactification, Commun. Math. Phys. 101 (1985) 341 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 2: loop amplitudes, anomalies and phenomenology, Cambridge University Press, Cambridge U.K. (1988).Google Scholar
  75. [75]
    M. Dine, R.G. Leigh and D.A. MacIntire, Of CP and other gauge symmetries in string theory, Phys. Rev. Lett. 69 (1992) 2030 [hep-th/9205011] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    K.-w. Choi, D.B. Kaplan and A.E. Nelson, Is CP a gauge symmetry?, Nucl. Phys. B 391 (1993) 515 [hep-ph/9205202] [INSPIRE].
  77. [77]
    S. Cecotti and C. Vafa, Theta-problem and the string swampland, arXiv:1808.03483 [INSPIRE].
  78. [78]
    E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].
  79. [79]
    K.-I. Izawa and T. Yanagida, Dynamical supersymmetry breaking in vector-like gauge theories, Prog. Theor. Phys. 95 (1996) 829 [hep-th/9602180] [INSPIRE].
  80. [80]
    K.A. Intriligator and S.D. Thomas, Dynamical supersymmetry breaking on quantum moduli spaces, Nucl. Phys. B 473 (1996) 121 [hep-th/9603158] [INSPIRE].
  81. [81]
    K.I. Izawa, F. Takahashi, T.T. Yanagida and K. Yonekura, Gravity mediation of supersymmetry breaking with dynamical metastability, arXiv:0810.5413 [INSPIRE].
  82. [82]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  83. [83]
    H. Murayama and Y. Nomura, Gauge mediation simplified, Phys. Rev. Lett. 98 (2007) 151803 [hep-ph/0612186] [INSPIRE].
  84. [84]
    H. Murayama and Y. Nomura, Simple scheme for gauge mediation, Phys. Rev. D 75 (2007) 095011 [hep-ph/0701231] [INSPIRE].
  85. [85]
    E. Witten, Theta dependence in the large N limit of four-dimensional gauge theories, Phys. Rev. Lett. 81 (1998) 2862 [hep-th/9807109] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  86. [86]
    M. Yamazaki and K. Yonekura, From 4d Yang-Mills to 2d ℂN −1 model: IR problem and confinement at weak coupling, JHEP 07 (2017) 088 [arXiv:1704.05852] [INSPIRE].
  87. [87]
    K. Aitken, A. Cherman and M. Ünsal, Vacuum structure of Yang-Mills theory as a function of θ, JHEP 09 (2018) 030 [arXiv:1804.06848] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  88. [88]
    I. Affleck, M. Dine and N. Seiberg, Dynamical supersymmetry breaking in supersymmetric QCD, Nucl. Phys. B 241 (1984) 493 [INSPIRE].
  89. [89]
    R.F. Dashen, Some features of chiral symmetry breaking, Phys. Rev. D 3 (1971) 1879 [INSPIRE].
  90. [90]
    A. Achücarro and G.A. Palma, The string swampland constraints require multi-field inflation, arXiv:1807.04390 [INSPIRE].
  91. [91]
    A. Kehagias and A. Riotto, A note on inflation and the swampland, arXiv:1807.05445 [INSPIRE].
  92. [92]
    H. Matsui and F. Takahashi, Eternal inflation and swampland conjectures, arXiv:1807.11938 [INSPIRE].
  93. [93]
    I. Ben-Dayan, Draining the swampland, arXiv:1808.01615 [INSPIRE].
  94. [94]
    W.H. Kinney, S. Vagnozzi and L. Visinelli, The zoo plot meets the swampland: mutual (in)consistency of single-field inflation, string conjectures and cosmological data, arXiv:1808.06424 [INSPIRE].
  95. [95]
    N. Kaloper, A. Lawrence and L. Sorbo, An ignoble approach to large field inflation, JCAP 03 (2011) 023 [arXiv:1101.0026] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    S. Dubovsky, A. Lawrence and M.M. Roberts, Axion monodromy in a model of holographic gluodynamics, JHEP 02 (2012) 053 [arXiv:1105.3740] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  97. [97]
    M. Dine, P. Draper and A. Monteux, Monodromy inflation in SUSY QCD, JHEP 07 (2014) 146 [arXiv:1405.0068] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  98. [98]
    K. Yonekura, Notes on natural inflation, JCAP 10 (2014) 054 [arXiv:1405.0734] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    N. Kaloper and A. Lawrence, London equation for monodromy inflation, Phys. Rev. D 95 (2017)063526 [arXiv:1607.06105] [INSPIRE].
  100. [100]
    E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].ADSGoogle Scholar
  101. [101]
    L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].
  102. [102]
    Y. Nomura, T. Watari and M. Yamazaki, Pure natural inflation, Phys. Lett. B 776 (2018) 227 [arXiv:1706.08522] [INSPIRE].
  103. [103]
    K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation with pseudo-Nambu-Goldstone bosons, Phys. Rev. Lett. 65 (1990) 3233 [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    L. Giusti, S. Petrarca and B. Taglienti, Theta dependence of the vacuum energy in the SU(3) gauge theory from the lattice, Phys. Rev. D 76 (2007) 094510 [arXiv:0705.2352] [INSPIRE].
  105. [105]
    Y. Nomura and M. Yamazaki, Tensor modes in pure natural inflation, Phys. Lett. B 780 (2018) 106 [arXiv:1711.10490] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Kavli Institute for the Physics and Mathematics of the Universe (WPI)University of TokyoKashiwaJapan
  2. 2.Berkeley Center for Theoretical Physics and Department of PhysicsUniversity of CaliforniaBerkeleyU.S.A.
  3. 3.Physics Division, Lawrence Berkeley National LaboratoryBerkeleyU.S.A.

Personalised recommendations