Advertisement

Journal of High Energy Physics

, 2018:29 | Cite as

Factoring the strong CP problem

  • Prateek AgrawalEmail author
  • Kiel Howe
Open Access
Regular Article - Theoretical Physics

Abstract

We present a new mechanism to solve the strong CP problem using N ≥ 2 axions, each dynamically relaxing part of the θ parameter. At high energies M ≫ ΛQCD the SU(3)c group becomes the diagonal subgroup of an SU(3)N gauge group, and the non-perturbative effects in each individual SU(3) factor generate a potential for the corresponding axion. The vacuum is naturally aligned to ensure \( \overline{\theta} = 0 \) at low energies, and the masses of these axions can be much larger than for the standard QCD axion. This mechanism avoids the introduction of a discrete Z2 symmetry and associated ‘mirror’ copies of the SM fermions, and also avoids the introduction and stabilization of new light colored states to modify the running of the QCD gauge coupling found in other heavy axion models. This strengthens the motivation for axion-like particles solving the strong CP problem at points beyond the standard QCD axion curve in the (ma, fa) plane.

Keywords

Anomalies in Field and String Theories Beyond Standard Model CP violation Solitons Monopoles and Instantons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].
  2. [2]
    B. Graner, Y. Chen, E.G. Lindahl and B.R. Heckel, Reduced Limit on the Permanent Electric Dipole Moment of Hg199, Phys. Rev. Lett. 116 (2016) 161601 [Erratum ibid. 119 (2017) 119901] [arXiv:1601.04339] [INSPIRE].
  3. [3]
    J.M. Pendlebury et al., Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D 92 (2015) 092003 [arXiv:1509.04411] [INSPIRE].
  4. [4]
    M.A.B. Beg and H.S. Tsao, Strong P, T Noninvariances in a Superweak Theory, Phys. Rev. Lett. 41 (1978) 278 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    H. Georgi, A Model of Soft CP Violation, Hadronic J. 1 (1978) 155 [INSPIRE].Google Scholar
  6. [6]
    R.N. Mohapatra and G. Senjanović, Natural Suppression of Strong p and t Noninvariance, Phys. Lett. B 79 (1978) 283 [INSPIRE].
  7. [7]
    A.E. Nelson, Naturally Weak CP-violation, Phys. Lett. B 136 (1984) 387 [INSPIRE].
  8. [8]
    S.M. Barr, Solving the Strong CP Problem Without the Peccei-Quinn Symmetry, Phys. Rev. Lett. 53 (1984) 329 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    K.S. Babu and R.N. Mohapatra, A Solution to the Strong CP Problem Without an Axion, Phys. Rev. D 41 (1990) 1286 [INSPIRE].
  10. [10]
    G. Hiller and M. Schmaltz, Solving the Strong CP Problem with Supersymmetry, Phys. Lett. B 514 (2001) 263 [hep-ph/0105254] [INSPIRE].
  11. [11]
    M. Dine and P. Draper, Challenges for the Nelson-Barr Mechanism, JHEP 08 (2015) 132 [arXiv:1506.05433] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    S.M. Barr, D. Chang and G. Senjanović, Strong CP problem and parity, Phys. Rev. Lett. 67 (1991) 2765 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R.N. Mohapatra and A. Rasin, A supersymmetric solution to CP problems, Phys. Rev. D 54 (1996) 5835 [hep-ph/9604445] [INSPIRE].
  14. [14]
    R.T. D’Agnolo and A. Hook, Finding the Strong CP problem at the LHC, Phys. Lett. B 762 (2016) 421 [arXiv:1507.00336] [INSPIRE].
  15. [15]
    R.D. Peccei and H.R. Quinn, Some Aspects of Instantons, Nuovo Cim. A 41 (1977) 309 [INSPIRE].
  16. [16]
    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G. ’t Hooft, Symmetry Breaking Through Bell-Jackiw Anomalies, Phys. Rev. Lett. 37 (1976) 8 [INSPIRE].
  18. [18]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].
  19. [19]
    M. Dine, P. Draper and G. Festuccia, Instanton Effects in Three Flavor QCD, Phys. Rev. D 92 (2015) 054004 [arXiv:1410.8505] [INSPIRE].
  20. [20]
    S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].
  21. [21]
    F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].
  22. [22]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  23. [23]
    C. Vafa and E. Witten, Parity Conservation in QCD, Phys. Rev. Lett. 53 (1984) 535 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P.W. Graham, I.G. Irastorza, S.K. Lamoreaux, A. Lindner and K.A. van Bibber, Experimental Searches for the Axion and Axion-Like Particles, Ann. Rev. Nucl. Part. Sci. 65 (2015) 485 [arXiv:1602.00039] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Agrawal and K. Howe, A Flavorful Factoring of the Strong CP Problem, arXiv:1712.05803 [INSPIRE].
  26. [26]
    V.A. Rubakov, Grand unification and heavy axion, JETP Lett. 65 (1997) 621 [hep-ph/9703409] [INSPIRE].
  27. [27]
    Z. Berezhiani, L. Gianfagna and M. Giannotti, Strong CP problem and mirror world: The Weinberg-Wilczek axion revisited, Phys. Lett. B 500 (2001) 286 [hep-ph/0009290] [INSPIRE].
  28. [28]
    A. Hook, Anomalous solutions to the strong CP problem, Phys. Rev. Lett. 114 (2015) 141801 [arXiv:1411.3325] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    H. Fukuda, K. Harigaya, M. Ibe and T.T. Yanagida, Model of visible QCD axion, Phys. Rev. D 92 (2015) 015021 [arXiv:1504.06084] [INSPIRE].
  30. [30]
    S. Dimopoulos, A. Hook, J. Huang and G. Marques-Tavares, A collider observable QCD axion, JHEP 11 (2016) 052 [arXiv:1606.03097] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    B. Holdom and M.E. Peskin, Raising the Axion Mass, Nucl. Phys. B 208 (1982) 397 [INSPIRE].
  32. [32]
    B. Holdom, Strong QCD at High-energies and a Heavy Axion, Phys. Lett. B 154 (1985) 316 [Erratum ibid. B 156 (1985) 452] [INSPIRE].
  33. [33]
    M. Dine and N. Seiberg, String Theory and the Strong CP Problem, Nucl. Phys. B 273 (1986) 109 [INSPIRE].
  34. [34]
    K. Choi, C.W. Kim and W.K. Sze, Mass Renormalization by Instantons and the Strong CP Problem, Phys. Rev. Lett. 61 (1988) 794 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J.M. Flynn and L. Randall, A Computation of the Small Instanton Contribution to the Axion Potential, Nucl. Phys. B 293 (1987) 731 [INSPIRE].
  36. [36]
    K. Choi and H.D. Kim, Small instanton contribution to the axion potential in supersymmetric models, Phys. Rev. D 59 (1999) 072001 [hep-ph/9809286] [INSPIRE].
  37. [37]
    A. Albaid, M. Dine and P. Draper, Strong CP and SUZ 2, JHEP 12 (2015) 046 [arXiv:1510.03392] [INSPIRE].
  38. [38]
    Y. Bai and B.A. Dobrescu, Heavy octets and Tevatron signals with three or four b jets, JHEP 07 (2011) 100 [arXiv:1012.5814] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    R.S. Chivukula, A. Farzinnia, J. Ren and E.H. Simmons, Constraints on the Scalar Sector of the Renormalizable Coloron Model, Phys. Rev. D 88 (2013) 075020 [Erratum ibid. D 89 (2014) 059905] [arXiv:1307.1064] [INSPIRE].
  40. [40]
    R.S. Chivukula, A. Farzinnia and E.H. Simmons, Vacuum Stability and Triviality Analyses of the Renormalizable Coloron Model, Phys. Rev. D 92 (2015) 055002 [arXiv:1504.03012] [INSPIRE].
  41. [41]
    Y. Bai and B.A. Dobrescu, Minimal SU(3) × SU(3) Symmetry Breaking Patterns, Phys. Rev. D 97 (2018) 055024 [arXiv:1710.01456] [INSPIRE].
  42. [42]
    E. Nardi, Naturally large Yukawa hierarchies, Phys. Rev. D 84 (2011) 036008 [arXiv:1105.1770] [INSPIRE].
  43. [43]
    J.R. Espinosa, C.S. Fong and E. Nardi, Yukawa hierarchies from spontaneous breaking of the SU(3)L × SU(3)R flavour symmetry?, JHEP 02 (2013) 137 [arXiv:1211.6428] [INSPIRE].
  44. [44]
    J.R. Ellis and M.K. Gaillard, Strong and Weak CP-violation, Nucl. Phys. B 150 (1979) 141 [INSPIRE].
  45. [45]
    M. Dugan, B. Grinstein and L.J. Hall, CP Violation in the Minimal N = 1 Supergravity Theory, Nucl. Phys. B 255 (1985) 413 [INSPIRE].
  46. [46]
    G. ’t Hooft, Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle, Phys. Rev. D 14 (1976) 3432 [Erratum ibid. D 18 (1978) 2199] [INSPIRE].
  47. [47]
    C.G. Callan Jr., R.F. Dashen and D.J. Gross, Toward a Theory of the Strong Interactions, Phys. Rev. D 17 (1978) 2717 [INSPIRE].
  48. [48]
    N. Andrei and D.J. Gross, The Effect of Instantons on the Short Distance Structure of Hadronic Currents, Phys. Rev. D 18 (1978) 468 [INSPIRE].
  49. [49]
    S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992) 539 [INSPIRE].
  50. [50]
    M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].
  51. [51]
    S. Ghigna, M. Lusignoli and M. Roncadelli, Instability of the invisible axion, Phys. Lett. B 283 (1992) 278.Google Scholar
  52. [52]
    C.D. Roberts and A.G. Williams, Dyson-Schwinger equations and their application to hadronic physics, Prog. Part. Nucl. Phys. 33 (1994) 477 [hep-ph/9403224] [INSPIRE].
  53. [53]
    T. Appelquist, A. Nyffeler and S.B. Selipsky, Analyzing chiral symmetry breaking in supersymmetric gauge theories, Phys. Lett. B 425 (1998) 300 [hep-th/9709177] [INSPIRE].
  54. [54]
    J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].
  56. [56]
    M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].
  57. [57]
    A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [INSPIRE].
  58. [58]
    S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1 [hep-ph/9709356] [INSPIRE].
  59. [59]
    C. Hamzaoui and M. Pospelov, The limits on CP odd four fermion operators containing strange quark field, Phys. Rev. D 60 (1999) 036003 [hep-ph/9901363] [INSPIRE].
  60. [60]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].
  61. [61]
    G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP 01 (2016) 034 [arXiv:1511.02867] [INSPIRE].CrossRefGoogle Scholar
  62. [62]
    D. Cadamuro and J. Redondo, Cosmological bounds on pseudo Nambu-Goldstone bosons, JCAP 02 (2012) 032 [arXiv:1110.2895] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, WISPy Cold Dark Matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    D. Baumann, D. Green and B. Wallisch, New Target for Cosmic Axion Searches, Phys. Rev. Lett. 117 (2016) 171301 [arXiv:1604.08614] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    K. Blum, R.T. D’Agnolo, M. Lisanti and B.R. Safdi, Constraining Axion Dark Matter with Big Bang Nucleosynthesis, Phys. Lett. B 737 (2014) 30 [arXiv:1401.6460] [INSPIRE].
  66. [66]
    M. Berg et al., Constraints on Axion-Like Particles from X-ray Observations of NGC1275, Astrophys. J. 847 (2017) 101 [arXiv:1605.01043] [INSPIRE].
  67. [67]
    M.C.D. Marsh, H.R. Russell, A.C. Fabian, B.P. McNamara, P. Nulsen and C.S. Reynolds, A New Bound on Axion-Like Particles, JCAP 12 (2017) 036 [arXiv:1703.07354] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J.P. Conlon, F. Day, N. Jennings, S. Krippendorf and M. Rummel, Constraints on Axion-Like Particles from Non-Observation of Spectral Modulations for X-ray Point Sources, JCAP 07 (2017) 005 [arXiv:1704.05256] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    CAST collaboration, V. Anastassopoulos et al., New CAST Limit on the Axion-Photon Interaction, Nature Phys. 13 (2017) 584 [arXiv:1705.02290] [INSPIRE].
  70. [70]
    J.K. Vogel et al., IAXO - The International Axion Observatory, in 8th Patras Workshop on Axions, WIMPs and WISPs (AXION-WIMP 2012) Chicago, Illinois, July 18-22, 2012, arXiv:1302.3273 fermilab-pub-13-699 (2013).
  71. [71]
    J. Jaeckel and M. Spannowsky, Probing MeV to 90 GeV axion-like particles with LEP and LHC, Phys. Lett. B 753 (2016) 482 [arXiv:1509.00476] [INSPIRE].
  72. [72]
    A. Hook and J. Huang, Probing axions with neutron star inspirals and other stellar processes, JHEP 06 (2018) 036 [arXiv:1708.08464] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  73. [73]
    A. Arvanitaki, M. Baryakhtar and X. Huang, Discovering the QCD Axion with Black Holes and Gravitational Waves, Phys. Rev. D 91 (2015) 084011 [arXiv:1411.2263] [INSPIRE].
  74. [74]
    K. Mimasu and V. Sanz, ALPs at Colliders, JHEP 06 (2015) 173 [arXiv:1409.4792] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    CMS collaboration, Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 01 (2018) 097 [arXiv:1710.00159] [INSPIRE].
  76. [76]
    ATLAS collaboration, Search for new phenomena in dijet events using 37 fb −1 of pp collision data collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 052004 [arXiv:1703.09127] [INSPIRE].
  77. [77]
    CMS collaboration, Searches for dijet resonances in pp collisions at \( \sqrt{s}=13 \) TeV using data collected in 2016., CMS-PAS-EXO-16-056 (2016).
  78. [78]
    ATLAS collaboration, Search for scalar diphoton resonances with 15.4 fb −1 of data collected at \( \sqrt{s}=13 \) TeV in 2015 and 2016 with the ATLAS detector, ATLAS-CONF-2016-059 (2016).
  79. [79]
    CMS collaboration, Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search, Phys. Lett. B 767 (2017) 147 [arXiv:1609.02507] [INSPIRE].
  80. [80]
    ATLAS collaboration, Search for Scalar Diphoton Resonances in the Mass Range 65 − 600 GeV with the ATLAS Detector in pp Collision Data at \( \sqrt{s}=8 \) T eV , Phys. Rev. Lett. 113 (2014) 171801 [arXiv:1407.6583] [INSPIRE].
  81. [81]
    CMS collaboration, Search for new resonances in the diphoton final state in the mass range between 80 and 110 GeV in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-HIG-14-037 (2014).
  82. [82]
    CMS collaboration, Search for new resonances in the diphoton final state in the mass range between 70 and 110 GeV in pp collisions at \( \sqrt{s}=8 \) and 13 TeV, CMS-PAS-HIG-17-013 (2017).
  83. [83]
    A. Belyaev et al., Di-boson signatures as Standard Candles for Partial Compositeness, JHEP 01 (2017) 094 [Erratum ibid. 12 (2017) 088] [arXiv:1610.06591] [INSPIRE].
  84. [84]
    M.J. Dolan, T. Ferber, C. Hearty, F. Kahlhoefer and K. Schmidt-Hoberg, Revised constraints and Belle II sensitivity for visible and invisible axion-like particles, JHEP 12 (2017) 094 [arXiv:1709.00009] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    Belle-II collaboration, T. Abe et al., Belle II Technical Design Report, arXiv:1011.0352 [INSPIRE].
  86. [86]
    SHiP collaboration, M. Anelli et al., A facility to Search for Hidden Particles (SHiP) at the CERN SPS, arXiv:1504.04956 [INSPIRE].
  87. [87]
    TLEP Design Study Working Group collaboration, M. Bicer et al., First Look at the Physics Case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].
  88. [88]
    A. Mariotti, D. Redigolo, F. Sala and K. Tobioka, New LHC bound on low-mass diphoton resonances, Phys. Lett. B 783 (2018) 13 [arXiv:1710.01743] [INSPIRE].
  89. [89]
    T.M. Shokair et al., Future Directions in the Microwave Cavity Search for Dark Matter Axions, Int. J. Mod. Phys. A 29 (2014) 1443004 [arXiv:1405.3685] [INSPIRE].
  90. [90]
    P.W. Graham and S. Rajendran, New Observables for Direct Detection of Axion Dark Matter, Phys. Rev. D 88 (2013) 035023 [arXiv:1306.6088] [INSPIRE].
  91. [91]
    D. Budker, P.W. Graham, M. Ledbetter, S. Rajendran and A. Sushkov, Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr), Phys. Rev. X 4 (2014) 021030 [arXiv:1306.6089] [INSPIRE].
  92. [92]
    A. Garcon et al., The Cosmic Axion Spin Precession Experiment (CASPEr): a dark-matter search with nuclear magnetic resonance, arXiv:1707.05312 [INSPIRE].
  93. [93]
    Y. Kahn, B.R. Safdi and J. Thaler, Broadband and Resonant Approaches to Axion Dark Matter Detection, Phys. Rev. Lett. 117 (2016) 141801 [arXiv:1602.01086] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    R. Bähre et al., Any light particle search II —Technical Design Report, 2013 JINST 8 T09001 [arXiv:1302.5647] [INSPIRE].
  95. [95]
    L. Di Luzio, F. Mescia and E. Nardi, Redefining the Axion Window, Phys. Rev. Lett. 118 (2017) 031801 [arXiv:1610.07593] [INSPIRE].
  96. [96]
    M. Farina, D. Pappadopulo, F. Rompineve and A. Tesi, The photo-philic QCD axion, JHEP 01 (2017) 095 [arXiv:1611.09855] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    P. Agrawal, J. Fan, M. Reece and L.-T. Wang, Experimental Targets for Photon Couplings of the QCD Axion, JHEP 02 (2018) 006 [arXiv:1709.06085] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsHarvard UniversityCambridgeU.S.A.
  2. 2.Fermi National Accelerator LaboratoryBataviaU.S.A.

Personalised recommendations