Journal of High Energy Physics

, 2018:27 | Cite as

A composite pNGB leptoquark at the LHC

  • Ezequiel Alvarez
  • Leandro Da RoldEmail author
  • Aurelio Juste
  • Manuel Szewc
  • Tamara Vazquez Schroeder
Open Access
Regular Article - Experimental Physics


The measurements of R K (∗) and R D (∗) by BaBar, Belle and the LHCb collaborations could be showing a hint of lepton flavor universality violation that can be accommodated by the presence of suitable leptoquarks at the TeV scale. We consider an effective description, with leptoquarks arising as composite pseudo Nambu-Goldstone bosons, as well as anarchic partial compositeness of the SM fermions. Considering the R K (∗) anomaly within this framework, we study pair production of \( {S}_3\sim {\left(\overline{3},3\right)}_{1/3} \) at the LHC. We focus on the component S 3 1/3 of the triplet, which decays predominantly into and , and study the bounds from existing searches at \( \sqrt{s}=13 \) TeV at the LHC. We find that sbottom searches in the \( b\overline{b}+{E}_{\mathrm{T}}^{\mathrm{miss}} \) final state best explore the region in parameter space preferred by our model and currently exclude S 3 1/3 masses up to ∼1 TeV. Additional searches, considering the tτ and decay modes, are required to probe the full physical parameter space. In this paper we also recast existing studies on direct leptoquark searches in the tτ tτ channel and SM \( t\overline{t}t\overline{t} \) searches, and obtain the regions in parameter space currently excluded. Practically the whole physical parameter space is currently excluded for masses up to ∼0.8 TeV, which could be extended up to ∼1 TeV with the full Run 3 dataset. We conclude that pair production searches for this leptoquark can benefit from considering the final state tτ b + E T miss , where the largest branching ratio is expected. We appraise that future explorations of leptoquarks explaining the B-anomalies with masses beyond the TeV should also consider single and non-resonant production in order to extend the mass reach.


Beyond Standard Model Exotics Hadron-Hadron scattering (experiments) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  2. [2]
    LHCb collaboration, Measurement of the ratio of branching fractions \( \mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [Erratum ibid. 115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].
  3. [3]
    Belle collaboration, M. Huschle et al., Measurement of the branching ratio of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( \overline{B}\to {D}^{\left(\ast \right)}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
  4. [4]
    LHCb collaboration, Test of lepton universality with B 0K ∗0 + decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  5. [5]
    D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, B-physics anomalies: a guide to combined explanations, JHEP 11 (2017) 044 [arXiv:1706.07808] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Hiller and I. Nisandzic, R K and R Kbeyond the Standard Model, Phys. Rev. D 96 (2017) 035003 [arXiv:1704.05444] [INSPIRE].
  7. [7]
    L. Calibbi, A. Crivellin and T. Ota, Effective field theory approach to \( b\to s\ell {\ell}^{\left(\prime \right)},\ B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) and BD (∗) τ ν with third generation couplings, Phys. Rev. Lett. 115 (2015) 181801 [arXiv:1506.02661] [INSPIRE].
  8. [8]
    D. Bečirević, S. Fajfer and N. Košnik, Lepton flavor nonuniversality in bsℓ + processes, Phys. Rev. D 92 (2015) 014016 [arXiv:1503.09024] [INSPIRE].
  9. [9]
    I. Doršner, S. Fajfer, D.A. Faroughy and N. Košnik, The role of the S 3 GUT leptoquark in flavor universality and collider searches, arXiv:1706.07779 [INSPIRE].
  10. [10]
    A. Crivellin, D. Müller and T. Ota, Simultaneous explanation of R(D (∗)) and b + μ : the last scalar leptoquarks standing, JHEP 09 (2017) 040 [arXiv:1703.09226] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.C. Pati and A. Salam, Unified lepton-hadron symmetry and a gauge theory of the basic interactions, Phys. Rev. D 8 (1973) 1240 [INSPIRE].
  12. [12]
    D. Bečirević, S. Fajfer, N. Košnik and O. Sumensari, Leptoquark model to explain the B-physics anomalies, R K and R D, Phys. Rev. D 94 (2016) 115021 [arXiv:1608.08501] [INSPIRE].
  13. [13]
    N. Kosnik, Model independent constraints on leptoquarks from bsℓ + processes, Phys. Rev. D 86 (2012) 055004 [arXiv:1206.2970] [INSPIRE].
  14. [14]
    S. Fajfer, Scalar (or vector) leptoquarks in B meson anomalies, Nucl. Part. Phys. Proc. 285-286 (2017) 81 [INSPIRE].
  15. [15]
    A. Angelescu, D. Bečirević, D.A. Faroughy and O. Sumensari, Closing the window on single leptoquark solutions to the B-physics anomalies, JHEP 10 (2018) 183 [arXiv:1808.08179] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D. Bečirević, I. Doršner, S. Fajfer, N. Košnik, D.A. Faroughy and O. Sumensari, Scalar leptoquarks from grand unified theories to accommodate the B-physics anomalies, Phys. Rev. D 98 (2018) 055003 [arXiv:1806.05689] [INSPIRE].
  17. [17]
    D. Marzocca, Addressing the B-physics anomalies in a fundamental composite Higgs model, JHEP 07 (2018) 121 [arXiv:1803.10972] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    B. Gripaios, Composite leptoquarks at the LHC, JHEP 02 (2010) 045 [arXiv:0910.1789] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    B. Gripaios, M. Nardecchia and S.A. Renner, Composite leptoquarks and anomalies in B-meson decays, JHEP 05 (2015) 006 [arXiv:1412.1791] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    L.D. Rold and F. Lamagna, Composite Higgs and leptoquarks from a simple group, in preparation.Google Scholar
  21. [21]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].
  22. [22]
    C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  24. [24]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].
  25. [25]
    B. Keren-Zur, P. Lodone, M. Nardecchia, D. Pappadopulo, R. Rattazzi and L. Vecchi, On partial compositeness and the CP asymmetry in charm decays, Nucl. Phys. B 867 (2013) 394 [arXiv:1205.5803] [INSPIRE].
  26. [26]
    M. Bauer, R. Malm and M. Neubert, A solution to the flavor problem of warped extra-dimension models, Phys. Rev. Lett. 108 (2012) 081603 [arXiv:1110.0471] [INSPIRE].
  27. [27]
    L. Da Rold and I.A. Davidovich, A symmetry for ϵ K, JHEP 10 (2017) 135 [arXiv:1704.08704] [INSPIRE].
  28. [28]
    L. Da Rold, Anarchy with linear and bilinear interactions, JHEP 10 (2017) 120 [arXiv:1708.08515] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G. Panico and A. Wulzer, The composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) 1 [arXiv:1506.01961] [INSPIRE].CrossRefzbMATHGoogle Scholar
  30. [30]
    I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1 [arXiv:1603.04993] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    CMS collaboration, Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 07 (2017) 121 [arXiv:1703.03995] [INSPIRE].
  32. [32]
    ATLAS collaboration, Search for B-L R-parity-violating top squarks in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS experiment, Phys. Rev. D 97 (2018) 032003 [arXiv:1710.05544] [INSPIRE].
  33. [33]
    CMS collaboration, Search for new phenomena with the M T2 variable in the all-hadronic final state produced in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 77 (2017) 710 [arXiv:1705.04650] [INSPIRE].
  34. [34]
    CMS collaboration, Search for third-generation scalar leptoquarks decaying to a top quark and a τ lepton at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 78 (2018) 707 [arXiv:1803.02864] [INSPIRE].
  35. [35]
    CMS collaboration, Search for leptoquarks coupling to third generation quarks, CMS-PAS-B2G-16-027, CERN, Geneva, Switzerland, (2018).
  36. [36]
    CMS collaboration, Search for Standard Model production of four top quarks with same-sign and multilepton final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 78 (2018) 140 [arXiv:1710.10614] [INSPIRE].
  37. [37]
    I. Doršner and A. Greljo, Leptoquark toolbox for precision collider studies, JHEP 05 (2018) 126 [arXiv:1801.07641] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    ATLAS collaboration, Search for supersymmetry in events with b-tagged jets and missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 11 (2017) 195 [arXiv:1708.09266] [INSPIRE].
  39. [39]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  40. [40]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].
  42. [42]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  43. [43]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  44. [44]
    C. Borschensky et al., Squark and gluino production cross sections in pp collisions at \( \sqrt{s}=13,14,33 \) and 100TeV, Eur. Phys. J. C 74 (2014) 3174 [arXiv:1407.5066] [INSPIRE].
  45. [45]
    A.L. Read, Presentation of search results: the CL s technique, J. Phys. G 28 (2002) 2693 [INSPIRE].
  46. [46]
    M. Baak, G.J. Besjes, D. Côté, A. Koutsman, J. Lorenz and D. Short, HistFitter software framework for statistical data analysis, Eur. Phys. J. C 75 (2015) 153 [arXiv:1410.1280] [INSPIRE].
  47. [47]
    W. Verkerke and D. Kirkb, Roofit users manual v2.07,
  48. [48]
    F. James, MINUIT function minimization and error analysis: reference manual version 94.1, CERN-D-506, CERN, Geneva, Switzerland, (1994) [INSPIRE].
  49. [49]
    ATLAS collaboration, F. Rühr, Prospects for BSM searches at the high-luminosity LHC with the ATLAS detector, Nucl. Part. Phys. Proc. 273-275 (2016) 625 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Ezequiel Alvarez
    • 1
  • Leandro Da Rold
    • 2
    Email author
  • Aurelio Juste
    • 3
    • 4
  • Manuel Szewc
    • 1
  • Tamara Vazquez Schroeder
    • 5
  1. 1.International Center for Advanced Studies (ICAS), UNSAMBuenos AiresArgentina
  2. 2.Centro Atómico Bariloche, Instituto Balseiro and CONICETS. C. de BarilocheArgentina
  3. 3.Institut de Física d’Altes Energies (IFAE), Edifici Cn, Facultat de CienciesUniversitat Autònoma de BarcelonaBarcelonaSpain
  4. 4.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  5. 5.CERNGenevaSwitzerland

Personalised recommendations