Journal of High Energy Physics

, 2018:25 | Cite as

Predicting δPMNS, θ 23 PMNS and fermion mass ratios from flavour GUTs with CSD2

  • Stefan Antusch
  • Christian HohlEmail author
  • Charanjit K. Khosa
  • Vasja Susič
Open Access
Regular Article - Theoretical Physics


Constrained Sequential neutrino Dominance of type 2 (referred to as CSD2) is an attractive building block for flavour Grand Unified Theories (GUTs) because it predicts a non-zero leptonic mixing angle θ 13 PMNS , a deviation of θ 23 PMNS from π/4, as well as a leptonic Dirac CP phase δPMNS which is directly linked to the CP violation relevant for generating the baryon asymmetry via the leptogenesis mechanism. When embedded into GUT flavour models, these predictions are modified in a specific way, depending on which GUT operators are responsible for generating the entries of fermion Yukawa matrices. In this paper, we systematically investigate and classify the resulting predictions from supersymmetric SU(5) based flavour models by fitting the known fermion mass and mixing data, in order to provide a roadmap for future model building. Interestingly, the promising models predict the lepton Dirac CP phase δPMNS between 230° and 290°, and the quark CP phase δCKM in accordance with a right-angled unitarity triangle (αUT = 90°). Also, our model setup predicts the quantities θ 23 PMNS and md/ms with less uncertainty than current experimental precision, and allowing with future sensitivity to discriminate between them.


GUT Neutrino Physics Beyond Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    H. Georgi and C. Jarlskog, A New Lepton-Quark Mass Relation in a Unified Theory, Phys. Lett. B 86 (1979) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    H. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    H. Georgi, The State of the Art-Gauge Theories, AIP Conf. Proc. 23 (1975) 575 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Antusch and M. Spinrath, New GUT predictions for quark and lepton mass ratios confronted with phenomenology, Phys. Rev. D 79 (2009) 095004 [arXiv:0902.4644] [INSPIRE].ADSGoogle Scholar
  5. [5]
    S. Antusch, S.F. King and M. Spinrath, GUT predictions for quark-lepton Yukawa coupling ratios with messenger masses from non-singlets, Phys. Rev. D 89 (2014) 055027 [arXiv:1311.0877] [INSPIRE].ADSGoogle Scholar
  6. [6]
    S.F. King, Unified Models of Neutrinos, Flavour and CP-violation, Prog. Part. Nucl. Phys. 94 (2017) 217 [arXiv:1701.04413] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D. Meloni, GUT and flavor models for neutrino masses and mixing, Front. Phys. 5 (2017) 43 [arXiv:1709.02662] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].
  10. [10]
    Double CHOOZ collaboration, Y. Abe et al., Indication of Reactor \( {\overline{\nu}}_e \) Disappearance in the Double CHOOZ Experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].
  11. [11]
    RENO collaboration, J.K. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].
  12. [12]
    Daya Bay collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].
  13. [13]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].
  15. [15]
    Z.-z. Xing, Nearly tri-bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [INSPIRE].
  16. [16]
    S.F. King and C. Luhn, On the origin of neutrino flavour symmetry, JHEP 10 (2009) 093 [arXiv:0908.1897] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    H. Minakata and A.Y. Smirnov, Neutrino mixing and quark-lepton complementarity, Phys. Rev. D 70 (2004) 073009 [hep-ph/0405088] [INSPIRE].
  18. [18]
    A.Y. Smirnov, Neutrinos:. . . Annus mirabilis’, in proceedings of the 2nd International Workshop on Neutrino Oscillations in Venice (NO-VE 2003), Venice, Italy, 3–5 December 2003, pp. 1–21 [hep-ph/0402264] [INSPIRE].
  19. [19]
    M. Raidal, Relation between the neutrino and quark mixing angles and grand unification, Phys. Rev. Lett. 93 (2004) 161801 [hep-ph/0404046] [INSPIRE].
  20. [20]
    P.H. Frampton and R.N. Mohapatra, Possible gauge theoretic origin for quark-lepton complementarity, JHEP 01 (2005) 025 [hep-ph/0407139] [INSPIRE].
  21. [21]
    S. Antusch, S.F. King and R.N. Mohapatra, Quark-lepton complementarity in unified theories, Phys. Lett. B 618 (2005) 150 [hep-ph/0504007] [INSPIRE].
  22. [22]
    N. Li and B.-Q. Ma, Relations between quark and lepton mixing angles and matrices, Eur. Phys. J. C 42 (2005) 17 [hep-ph/0504161] [INSPIRE].
  23. [23]
    H. Minakata, Quark-lepton complementarity: A Review, in proceedings of the 11th International Workshop on Neutrino Telescopes, Venice, Italy, 22–25 February, pp. 83–97 [hep-ph/0505262] [INSPIRE].
  24. [24]
    K.A. Hochmuth, S.T. Petcov and W. Rodejohann, U PMNS = U l U ν, Phys. Lett. B 654 (2007) 177 [arXiv:0706.2975] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Goswami, S.T. Petcov, S. Ray and W. Rodejohann, Large |U e3| and Tri-bimaximal Mixing, Phys. Rev. D 80 (2009) 053013 [arXiv:0907.2869] [INSPIRE].ADSGoogle Scholar
  26. [26]
    N. Qin and B.-Q. Ma, A New simple form of quark mixing matrix, Phys. Lett. B 695 (2011) 194 [arXiv:1011.6412] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    K.M. Patel, An SO(10) × S 4 × Z n Model of Quark-Lepton Complementarity, Phys. Lett. B 695 (2011) 225 [arXiv:1008.5061] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N. Qin and B.-Q. Ma, Parametrization of fermion mixing matrices in Kobayashi-Maskawa form, Phys. Rev. D 83 (2011) 033006 [arXiv:1101.4729] [INSPIRE].ADSGoogle Scholar
  29. [29]
    Y.H. Ahn, H.-Y. Cheng and S. Oh, Quark-lepton complementarity and tribimaximal neutrino mixing from discrete symmetry, Phys. Rev. D 83 (2011) 076012 [arXiv:1102.0879] [INSPIRE].ADSGoogle Scholar
  30. [30]
    Y.H. Ahn, H.-Y. Cheng and S. Oh, Recent Neutrino Data and a Realistic Tribimaximal-like Neutrino Mixing Matrix, Phys. Lett. B 715 (2012) 203 [arXiv:1105.4460] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    Y.-j. Zheng and B.-Q. Ma, Re-Evaluation of Neutrino Mixing Pattern According to Latest T2K result, Eur. Phys. J. Plus 127 (2012) 7 [arXiv:1106.4040] [INSPIRE].CrossRefGoogle Scholar
  32. [32]
    Y.H. Ahn, H.-Y. Cheng and S. Oh, An extension of tribimaximal lepton mixing, Phys. Rev. D 84 (2011) 113007 [arXiv:1107.4549] [INSPIRE].ADSGoogle Scholar
  33. [33]
    V.D. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, Bimaximal mixing of three neutrinos, Phys. Lett. B 437 (1998) 107 [hep-ph/9806387] [INSPIRE].
  34. [34]
    S.F. King, Tri-bimaximal-Cabibbo Mixing, Phys. Lett. B 718 (2012) 136 [arXiv:1205.0506] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Antusch, C. Gross, V. Maurer and C. Sluka, \( {\theta}_{13}^{\mathrm{PMNS}}={\theta}_C/\sqrt{2} \) from GUTs, Nucl. Phys. B 866 (2013) 255 [arXiv:1205.1051] [INSPIRE].
  36. [36]
    A. Meroni, S.T. Petcov and M. Spinrath, A SUSY SU(5) × TUnified Model of Flavour with large θ 13, Phys. Rev. D 86 (2012) 113003 [arXiv:1205.5241] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Antusch, C. Gross, V. Maurer and C. Sluka, A flavour GUT model with θ 13PMNS ≃ θ C/2, Nucl. Phys. B 877 (2013) 772 [arXiv:1305.6612] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    Y. Zhao and P.-F. Zhang, SUSY SU(5) × S 4 GUT Flavor Model for Fermion Masses and Mixings with Adjoint, Large θ 13PMNS, JHEP 06 (2016) 032 [arXiv:1402.5834] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Y. Shimizu, M. Tanimoto and K. Yamamoto, Predicting CP-violation in Deviation from Tri-bimaximal mixing of Neutrinos, Mod. Phys. Lett. A 30 (2015) 1550002 [arXiv:1405.1521] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Antusch and V. Maurer, Large neutrino mixing angle θ 13MNS and quark-lepton mass ratios in unified flavour models, Phys. Rev. D 84 (2011) 117301 [arXiv:1107.3728] [INSPIRE].ADSGoogle Scholar
  41. [41]
    D. Marzocca, S.T. Petcov, A. Romanino and M. Spinrath, Sizeable θ 13 from the Charged Lepton Sector in SU(5), (Tri-)Bimaximal Neutrino Mixing and Dirac CP-violation, JHEP 11 (2011) 009 [arXiv:1108.0614] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    W. Chao and Y.-j. Zheng, Relatively Large Theta13 from Modification to the Tri-bimaximal, Bimaximal and Democratic Neutrino Mixing Matrices, JHEP 02 (2013) 044 [arXiv:1107.0738] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    X.-G. He and A. Zee, Minimal Modification to Tri-bimaximal Mixing, Phys. Rev. D 84 (2011) 053004 [arXiv:1106.4359] [INSPIRE].ADSGoogle Scholar
  44. [44]
    M.H. Rahat, P. Ramond and B. Xu, Asymmetric tribimaximal texture, Phys. Rev. D 98 (2018) 055030 [arXiv:1805.10684] [INSPIRE].ADSGoogle Scholar
  45. [45]
    S.F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification, JHEP 08 (2005) 105 [hep-ph/0506297] [INSPIRE].
  46. [46]
    I. Masina, A Maximal atmospheric mixing from a maximal CP-violating phase, Phys. Lett. B 633 (2006) 134 [hep-ph/0508031] [INSPIRE].
  47. [47]
    S. Antusch and S.F. King, Charged lepton corrections to neutrino mixing angles and CP phases revisited, Phys. Lett. B 631 (2005) 42 [hep-ph/0508044] [INSPIRE].
  48. [48]
    S. Antusch, P. Huber, S.F. King and T. Schwetz, Neutrino mixing sum rules and oscillation experiments, JHEP 04 (2007) 060 [hep-ph/0702286] [INSPIRE].
  49. [49]
    I. Girardi, S.T. Petcov and A.V. Titov, Determining the Dirac CP-violation Phase in the Neutrino Mixing Matrix from Sum Rules, Nucl. Phys. B 894 (2015) 733 [arXiv:1410.8056] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    P. Ballett, S.F. King, C. Luhn, S. Pascoli and M.A. Schmidt, Testing solar lepton mixing sum rules in neutrino oscillation experiments, JHEP 12 (2014) 122 [arXiv:1410.7573] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S. Antusch, S.F. King, C. Luhn and M. Spinrath, Trimaximal mixing with predicted θ 13 from a new type of constrained sequential dominance, Nucl. Phys. B 856 (2012) 328 [arXiv:1108.4278] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Antusch, S.F. King and M. Spinrath, Spontaneous CP-violation in A 4 × SU(5) with Constrained Sequential Dominance 2, Phys. Rev. D 87 (2013) 096018 [arXiv:1301.6764] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S. Antusch and C. Hohl, Predictions from a flavour GUT model combined with a SUSY breaking sector, JHEP 10 (2017) 155 [arXiv:1706.04274] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    DUNE collaboration, B. Abi et al., The DUNE Far Detector Interim Design Report. Volume 1: Physics, Technology and Strategies, arXiv:1807.10334 [INSPIRE].
  56. [56]
    DUNE collaboration, B. Abi et al., The DUNE Far Detector Interim Design Report. Volume 2: Single-Phase Module, arXiv:1807.10327 [INSPIRE].
  57. [57]
    DUNE collaboration, B. Abi et al., The DUNE Far Detector Interim Design Report. Volume 3: Dual-Phase Module, arXiv:1807.10340 [INSPIRE].
  58. [58]
    S.P. Martin, A Supersymmetry primer, in Perspectives on Supersymmetry, Advanced Series on Directions in High Energy Physics, volume 18, Word Scientific (1998) [in Perspectives on Supersymmetry II, Advanced Series on Directions in High Energy Physics, volume 21, Word Scientific (2010)] [hep-ph/9709356] [INSPIRE].
  59. [59]
    R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [INSPIRE].ADSGoogle Scholar
  60. [60]
    L.J. Hall, R. Rattazzi and U. Sarid, The Top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].
  61. [61]
    M. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].
  62. [62]
    T. Blazek, S. Raby and S. Pokorski, Finite supersymmetric threshold corrections to CKM matrix elements in the large tan β regime, Phys. Rev. D 52 (1995) 4151 [hep-ph/9504364] [INSPIRE].
  63. [63]
    S. Antusch and M. Spinrath, Quark and lepton masses at the GUT scale including SUSY threshold corrections, Phys. Rev. D 78 (2008) 075020 [arXiv:0804.0717] [INSPIRE].ADSGoogle Scholar
  64. [64]
    S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S. Antusch and C. Sluka, Testable SUSY Spectra from GUTs at a 100 TeV pp Collider, Int. J. Mod. Phys. A 31 (2016) 1644011 [arXiv:1604.00212] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    S. Antusch and C. Sluka, Predicting the Sparticle Spectrum from GUTs via SUSY Threshold Corrections with SusyTC, JHEP 07 (2016) 108 [arXiv:1512.06727] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  67. [67]
    J. Hisano, H. Murayama and T. Yanagida, Nucleon decay in the minimal supersymmetric SU(5) grand unification, Nucl. Phys. B 402 (1993) 46 [hep-ph/9207279] [INSPIRE].
  68. [68]
    S. Antusch, I. de Medeiros Varzielas, V. Maurer, C. Sluka and M. Spinrath, Towards predictive flavour models in SUSY SU(5) GUTs with doublet-triplet splitting, JHEP 09 (2014) 141 [arXiv:1405.6962] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    Y. Wu and D.-X. Zhang, Study of non-minimal SUSY SU(5) model with realistic fermion sectors, JHEP 01 (2011) 074 [arXiv:1101.3424] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  70. [70]
    K.S. Babu, B. Bajc and Z. Tavartkiladze, Realistic Fermion Masses and Nucleon Decay Rates in SUSY SU(5) with Vector-Like Matter, Phys. Rev. D 86 (2012) 075005 [arXiv:1207.6388] [INSPIRE].ADSGoogle Scholar
  71. [71]
    S. Antusch, S.F. King, M. Malinsky and M. Spinrath, Quark mixing sum rules and the right unitarity triangle, Phys. Rev. D 81 (2010) 033008 [arXiv:0910.5127] [INSPIRE].ADSGoogle Scholar
  72. [72]
    S. Antusch, C. Gross, V. Maurer and C. Sluka, Inverse neutrino mass hierarchy in a flavour GUT model, Nucl. Phys. B 879 (2014) 19 [arXiv:1306.3984] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  74. [74]
    S. Antusch, S.F. King, C. Luhn and M. Spinrath, Right Unitarity Triangles and Tri-Bimaximal Mixing from Discrete Symmetries and Unification, Nucl. Phys. B 850 (2011) 477 [arXiv:1103.5930] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  75. [75]
    S. Antusch, M. Holthausen, M.A. Schmidt and M. Spinrath, Solving the Strong CP Problem with Discrete Symmetries and the Right Unitarity Triangle, Nucl. Phys. B 877 (2013) 752 [arXiv:1307.0710] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  76. [76]
    R. Gatto, G. Sartori and M. Tonin, Weak Selfmasses, Cabibbo Angle and Broken SU(2) × SU(2), Phys. Lett. B 28 (1968) 128 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    S.F. King, Constructing the large mixing angle MNS matrix in seesaw models with right-handed neutrino dominance, JHEP 09 (2002) 011 [hep-ph/0204360] [INSPIRE].
  78. [78]
    S. Antusch and S.F. King, Sequential dominance, New J. Phys. 6 (2004) 110 [hep-ph/0405272] [INSPIRE].
  79. [79]
    S.F. King, Minimal predictive see-saw model with normal neutrino mass hierarchy, JHEP 07 (2013) 137 [arXiv:1304.6264] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    S.F. King, Minimal see-saw model predicting best fit lepton mixing angles, Phys. Lett. B 724 (2013) 92 [arXiv:1305.4846] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    S.F. King, A model of quark and lepton mixing, JHEP 01 (2014) 119 [arXiv:1311.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    S. Antusch, S.F. King and A. Riotto, Flavour-Dependent Leptogenesis with Sequential Dominance, JCAP 11 (2006) 011 [hep-ph/0609038] [INSPIRE].
  83. [83]
    S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [INSPIRE].
  84. [84]
    S. Antusch and M. Ratz, Supergraph techniques and two loop β-functions for renormalizable and nonrenormalizable operators, JHEP 07 (2002) 059 [hep-ph/0203027] [INSPIRE].
  85. [85]
    GERDA collaboration, M. Agostini et al., Improved Limit on Neutrinoless Double-β Decay of 76 Ge from GERDA Phase II, Phys. Rev. Lett. 120 (2018) 132503 [arXiv:1803.11100] [INSPIRE].
  86. [86]
    S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization revisited, Phys. Lett. B 519 (2001) 238 [hep-ph/0108005] [INSPIRE].
  87. [87]
    S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Stefan Antusch
    • 1
  • Christian Hohl
    • 1
    Email author
  • Charanjit K. Khosa
    • 2
  • Vasja Susič
    • 1
  1. 1.Department of PhysicsUniversity of BaselBaselSwitzerland
  2. 2.Department of Physics and AstronomyUniversity of SussexBrightonUnited Kingdom

Personalised recommendations