Journal of High Energy Physics

, 2018:12 | Cite as

Non-unitary evolution in the general extended EFT of inflation & excited initial states

  • Amjad AshoorioonEmail author
Open Access
Regular Article - Theoretical Physics


I study the “general” case that arises in the Extended Effective Field Theory of Inflation (gEEFToI), in which the coefficients of the sixth order polynomial dispersion relation depend on the physical wavelength of the fluctuation mode, hence they are time-dependent. At arbitrarily short wavelengths the unitarity is lost for each mode. Depending on the values of the gEEFToI parameters in the unitary gauge action, two scenarios can arise: in one, the coefficients of the polynomial become singular, flip signs at some physical wavelength and asymptote to a constant value as the wavelength of the mode is stretched to infinity. Starting from the WKB vacuum, the two-point function is essentially singular in the infinite IR limit. In the other case, the coefficients of the dispersion relation evolve monotonically from zero to a constant value in the infinite IR. In order to have a finite power spectrum starting from the vacuum in this case, the mode function has to be an eigensolution of the Confluent Heun (CH) equation, which leads to a very confined parameter space for gEEFToI. Finally, I look at a solution of the CH equation which is regular in the infinite IR limit and yields a finite power spectrum in either scenario. I demonstrate that this solution asymptotes to an excited state in past infinity in both cases. The result is interpreted in the light of the loss of unitarity for very small wavelengths. The outcome of such a non-unitary phase evolution should prepare each mode in the excited initial state that yields a finite two-point function for all the parameter space. This will be constraining of the new physics that UV completes such scenarios.


Cosmology of Theories beyond the SM Effective Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J. Martin and R.H. Brandenberger, The trans-Planckian problem of inflationary cosmology, Phys. Rev. D 63 (2001) 123501 [hep-th/0005209] [INSPIRE].
  2. [2]
    J. Martin and R. Brandenberger, On the dependence of the spectra of fluctuations in inflationary cosmology on trans-Planckian physics, Phys. Rev. D 68 (2003) 063513 [hep-th/0305161] [INSPIRE].
  3. [3]
    U.H. Danielsson, A note on inflation and trans-Planckian physics, Phys. Rev. D 66 (2002) 023511 [hep-th/0203198] [INSPIRE].
  4. [4]
    A. Ashoorioon, A. Kempf and R.B. Mann, Minimum length cutoff in inflation and uniqueness of the action, Phys. Rev. D 71 (2005) 023503 [astro-ph/0410139] [INSPIRE].
  5. [5]
    A. Ashoorioon and R.B. Mann, On the tensor/scalar ratio in inflation with UV cut off, Nucl. Phys. B 716 (2005) 261 [gr-qc/0411056] [INSPIRE].
  6. [6]
    A. Ashoorioon, J.L. Hovdebo and R.B. Mann, Running of the spectral index and violation of the consistency relation between tensor and scalar spectra from trans-Planckian physics, Nucl. Phys. B 727 (2005) 63 [gr-qc/0504135] [INSPIRE].
  7. [7]
    N. Kaloper, M. Kleban, A.E. Lawrence and S. Shenker, Signatures of short distance physics in the Cosmic Microwave Background, Phys. Rev. D 66 (2002) 123510 [hep-th/0201158] [INSPIRE].
  8. [8]
    A. Kempf and J.C. Niemeyer, Perturbation spectrum in inflation with cutoff, Phys. Rev. D 64 (2001) 103501 [astro-ph/0103225] [INSPIRE].
  9. [9]
    V. Bozza, M. Giovannini and G. Veneziano, Cosmological perturbations from a new physics hypersurface, JCAP 05 (2003) 001 [hep-th/0302184] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M.R. Brown and C.R. Dutton, Energy momentum tensor and definition of particle states for Robertson-Walker space-times, Phys. Rev. D 18 (1978) 4422 [INSPIRE].
  11. [11]
    A. Ashoorioon and G. Shiu, A note on calm excited states of inflation, JCAP 03 (2011) 025 [arXiv:1012.3392] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    A. Ashoorioon, K. Dimopoulos, M.M. Sheikh-Jabbari and G. Shiu, Reconciliation of high energy scale models of inflation with Planck, JCAP 02 (2014) 025 [arXiv:1306.4914] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  13. [13]
    A. Ashoorioon, K. Dimopoulos, M.M. Sheikh-Jabbari and G. Shiu, Non-Bunch-Davis initial state reconciles chaotic models with BICEP and Planck, Phys. Lett. B 737 (2014) 98 [arXiv:1403.6099] [INSPIRE].
  14. [14]
    W.G. Unruh, Sonic analog of black holes and the effects of high frequencies on black hole evaporation, Phys. Rev. D 51 (1995) 2827 [INSPIRE].
  15. [15]
    S. Corley and T. Jacobson, Hawking spectrum and high frequency dispersion, Phys. Rev. D 54 (1996) 1568 [hep-th/9601073] [INSPIRE].
  16. [16]
    A. Ashoorioon, R. Casadio, G. Geshnizjani and H.J. Kim, Getting super-excited with modified dispersion relations, JCAP 09 (2017) 008 [arXiv:1702.06101] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  17. [17]
    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The effective field theory of inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  18. [18]
    P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].
  19. [19]
    P. Hořava, Membranes at quantum criticality, JHEP 03 (2009) 020 [arXiv:0812.4287] [INSPIRE].MathSciNetGoogle Scholar
  20. [20]
    M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [INSPIRE].
  21. [21]
    N. Arkani-Hamed, P. Creminelli, S. Mukohyama and M. Zaldarriaga, Ghost inflation, JCAP 04 (2004) 001 [hep-th/0312100] [INSPIRE].
  22. [22]
    R. Gwyn, G.A. Palma, M. Sakellariadou and S. Sypsas, Effective field theory of weakly coupled inflationary models, JCAP 04 (2013) 004 [arXiv:1210.3020] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  23. [23]
    A. Ashoorioon, R. Casadio, M. Cicoli, G. Geshnizjani and H.J. Kim, Extended effective field theory of inflation, JHEP 02 (2018) 172 [arXiv:1802.03040] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    N. Bartolo, M. Fasiello, S. Matarrese and A. Riotto, Large non-Gaussianities in the effective field theory approach to single-field inflation: the bispectrum, JCAP 08 (2010) 008 [arXiv:1004.0893] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    A. Ashoorioon, D. Chialva and U. Danielsson, Effects of nonlinear dispersion relations on non-gaussianities, JCAP 06 (2011) 034 [arXiv:1104.2338] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    M. Ostrogradski, Mémoires sur les équations différentielles, relatives au problème des isopérimètres (in French), Mem. Acad. St. Petersbourg 6 (1850) 385 [INSPIRE].
  27. [27]
    A. Ronveaux ed., Heun’s differential equations, Oxford University Press, New York, U.S.A., (1995).Google Scholar
  28. [28]
    E.W. Leaver, Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in general relativity, and the two-center problem in molecular quantum mechanics, J. Math. Phys. 27 (1986) 1238.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    W. Gautschi, Computational aspects of three-term recurrence relations, SIAM Rev. 9 (1967) 24.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    L.J. El-Jaick and B.D.B. Figueiredo, Solutions for confluent and double-confluent Heun equations, J. Math. Phys. 49 (2008) 083508.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.School of PhysicsInstitute for Research in Fundamental Sciences (IPM)TehranIran
  2. 2.Riemann Center for Geometry and PhysicsLeibniz Universität HannoverHannoverGermany

Personalised recommendations