Advertisement

Journal of High Energy Physics

, 2018:11 | Cite as

Superconformal algebras for twisted connected sums and G2 mirror symmetry

  • Marc-Antoine FisetEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We realise the Shatashvili-Vafa superconformal algebra for G2 string compactifications by combining Odake and free conformal algebras following closely the recent mathematical construction of twisted connected sum G2 holonomy manifolds. By considering automorphisms of this realisation, we identify stringy analogues of two mirror maps proposed by Braun and Del Zotto for these manifolds.

Keywords

Conformal Field Models in String Theory Conformal and W Symmetry Differential and Algebraic Geometry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Kovalev, Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math. 565 (2003) 125.MathSciNetzbMATHGoogle Scholar
  2. [2]
    A. Corti, M. Haskins, J. Nordström and T. Pacini, Asymptotically cylindrical Calabi-Yau 3-folds from weak Fano 3-folds, Geom. Topol. 17 (2013) 1955.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Corti, M. Haskins, J. Nordström and T. Pacini, G2 -manifolds and associative submanifolds via semi-Fano 3-folds, Duke Math. J. 164 (2015) 1971 [arXiv:1207.4470] [INSPIRE].
  4. [4]
    J. Halverson and D.R. Morrison, The landscape of M-theory compactifications on seven-manifolds with G 2 holonomy, JHEP 04 (2015) 047 [arXiv:1412.4123] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    J. Halverson and D.R. Morrison, On gauge enhancement and singular limits in G 2 compactifications of M-theory, JHEP 04 (2016) 100 [arXiv:1507.05965] [INSPIRE].
  6. [6]
    A.P. Braun, Tops as building blocks for G 2 manifolds, JHEP 10 (2017) 083 [arXiv:1602.03521] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T.C. da C. Guio, H. Jockers, A. Klemm and H.-Y. Yeh, Effective action from m-theory on twisted connected sum G 2 -manifolds, Commun. Math. Phys. 359 (2018) 535 [arXiv:1702.05435] [INSPIRE].
  8. [8]
    A.P. Braun and M. Del Zotto, Mirror symmetry for G 2 -manifolds: twisted connected sums and dual tops, JHEP 05 (2017) 080 [arXiv:1701.05202] [INSPIRE].
  9. [9]
    A.P. Braun and M. Del Zotto, Towards generalized mirror symmetry for twisted connected sum G 2 manifolds, JHEP 03 (2018) 082 [arXiv:1712.06571] [INSPIRE].
  10. [10]
    A.P. Braun and S. Schäfer-Nameki, Compact, singular G 2 -holonomy manifolds and M/Heterotic/F-theory duality, JHEP 04 (2018) 126 [arXiv:1708.07215] [INSPIRE].
  11. [11]
    A.P. Braun and S. Schäfer-Nameki, Spin(7)-manifolds as generalized connected sums and 3D \( \mathcal{N}=1 \) theories, JHEP 06 (2018) 103 [arXiv:1803.10755] [INSPIRE].
  12. [12]
    A.P. Braun et al., Infinitely many M 2-instanton corrections to M -theory on G 2 -manifolds, JHEP 09 (2018) 077 [arXiv:1803.02343] [INSPIRE].
  13. [13]
    D.D. Joyce, Compact Riemannian 7-manifolds with holonomy G 2 . I, II, J. Differential Geom. 43 (1996) 291.Google Scholar
  14. [14]
    D.D. Joyce, Compact manifolds with special holonomy, Oxford University Press, Oxford U.K. (2000).Google Scholar
  15. [15]
    S.L. Shatashvili and C. Vafa, Superstrings and manifold of exceptional holonomy, Selecta Math. 1 (1995) 347 [hep-th/9407025] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    G. Papadopoulos and P.K. Townsend, Compactification of D = 11 supergravity on spaces of exceptional holonomy, Phys. Lett. B 357 (1995) 300 [hep-th/9506150] [INSPIRE].
  17. [17]
    K. Becker et al., Supersymmetric cycles in exceptional holonomy manifolds and Calabi-Yau 4 folds, Nucl. Phys. B 480 (1996) 225 [hep-th/9608116] [INSPIRE].
  18. [18]
    B.S. Acharya, Dirichlet Joyce manifolds, discrete torsion and duality, Nucl. Phys. B 492 (1997) 591 [hep-th/9611036] [INSPIRE].
  19. [19]
    J.M. Figueroa-O’Farrill, A note on the extended superconformal algebras associated with manifolds of exceptional holonomy, Phys. Lett. B 392 (1997) 77 [hep-th/9609113] [INSPIRE].
  20. [20]
    B.S. Acharya, On mirror symmetry for manifolds of exceptional holonomy, Nucl. Phys. B 524 (1998) 269 [hep-th/9707186] [INSPIRE].
  21. [21]
    R. Blumenhagen and V. Braun, Superconformal field theories for compact G 2 manifolds, JHEP 12 (2001) 006 [hep-th/0110232] [INSPIRE].
  22. [22]
    S. Gukov, S.-T. Yau and E. Zaslow, Duality and fibrations on G 2 manifolds, hep-th/0203217 [INSPIRE].
  23. [23]
    R. Roiban, C. Romelsberger and J. Walcher, Discrete torsion in singular G 2 manifolds and real LG, Adv. Theor. Math. Phys. 6 (2003) 207 [hep-th/0203272] [INSPIRE].
  24. [24]
    T. Eguchi and Y. Sugawara, String theory on G 2 manifolds based on Gepner construction, Nucl. Phys. B 630 (2002) 132 [hep-th/0111012] [INSPIRE].
  25. [25]
    B. Noyvert, Unitary minimal models of SW (3/2, 3/2, 2) superconformal algebra and manifolds of G 2 holonomy, JHEP 03 (2002) 030 [hep-th/0201198] [INSPIRE].
  26. [26]
    K. Sugiyama and S. Yamaguchi, Cascade of special holonomy manifolds and heterotic string theory, Nucl. Phys. B 622 (2002) 3 [hep-th/0108219] [INSPIRE].
  27. [27]
    K. Sugiyama and S. Yamaguchi, Coset construction of noncompact Spin(7) and G 2 CFTs, Phys. Lett. B 538 (2002) 173 [hep-th/0204213] [INSPIRE].
  28. [28]
    T. Eguchi, Y. Sugawara and S. Yamaguchi, Supercoset CFT’s for string theories on noncompact special holonomy manifolds, Nucl. Phys. B 657 (2003) 3 [hep-th/0301164] [INSPIRE].
  29. [29]
    M.R. Gaberdiel and P. Kaste, Generalized discrete torsion and mirror symmetry for G 2 manifolds, JHEP 08 (2004) 001 [hep-th/0401125] [INSPIRE].
  30. [30]
    J. de Boer, A. Naqvi and A. Shomer, The topological G 2 string, Adv. Theor. Math. Phys. 12 (2008) 243 [hep-th/0506211] [INSPIRE].
  31. [31]
    S. Odake, Extension of N = 2 superconformal algebra and Calabi-Yau compactification, Mod. Phys. Lett. A 4 (1989) 557 [INSPIRE].
  32. [32]
    S. Grigorian, Moduli spaces of G 2 manifolds, Rev. Math. Phys. 22 (2010) 1061 [arXiv:0911.2185] [INSPIRE].
  33. [33]
    R. Blumenhagen, Covariant construction of N = 1 superW algebras, Nucl. Phys. B 381 (1992) 641 [INSPIRE].
  34. [34]
    R. Blumenhagen, W. Eholzer, A. Honecker and R. Hubel, New N = 1 extended superconformal algebras with two and three generators, Int. J. Mod. Phys. A 7 (1992) 7841 [hep-th/9207072] [INSPIRE].
  35. [35]
    P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    P.S. Howe and G. Papadopoulos, Holonomy groups and W symmetries, Commun. Math. Phys. 151 (1993) 467 [hep-th/9202036] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    X. De La Ossa and M.-A. Fiset, G-structure symmetries and anomalies in (1, 0) non-linear σ-models, arXiv:1809.01138 [INSPIRE].
  38. [38]
    K. Becker, D. Robbins and E. Witten, The α Expansion On A Compact Manifold Of Exceptional Holonomy, JHEP 06 (2014) 051 [arXiv:1404.2460] [INSPIRE].
  39. [39]
    P. Deligne et al., Quantum fields and strings: a course for mathematicians. Volume 2, American Mathematical Society, U.S.A. (1999).Google Scholar
  40. [40]
    A. Ali, Classification of two-dimensional N = 4 superconformal symmetries, hep-th/9906096 [INSPIRE].
  41. [41]
    M. Ademollo et al., Dual string models with nonabelian color and flavor symmetries, Nucl. Phys. B 114 (1976) 297 [INSPIRE].
  42. [42]
    M. Ademollo et al., Supersymmetric strings and color confinement, Phys. Lett. B 62 (1976) 105.Google Scholar
  43. [43]
    W. Lerche, C. Vafa and N.P. Warner, Chiral rings in N = 2 superconformal theories, Nucl. Phys. B 324 (1989) 427 [INSPIRE].
  44. [44]
    C. Vafa and E. Witten, On orbifolds with discrete torsion, J. Geom. Phys. 15 (1995) 189 [hep-th/9409188] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T duality, Nucl. Phys. B 479 (1996) 243 [hep-th/9606040] [INSPIRE].
  46. [46]
    I.V. Melnikov, R. Minasian and S. Sethi, Spacetime supersymmetry in low-dimensional perturbative heterotic compactifications, Fortsch. Phys. 66 (2018) 1800027 [arXiv:1707.04613] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    M.-A. Fiset, C. Quigley and E.E. Svanes, Marginal deformations of heterotic G 2 σ-models, JHEP 02 (2018) 052 [arXiv:1710.06865] [INSPIRE].
  48. [48]
    R. Roiban and J. Walcher, Rational conformal field theories with G 2 holonomy, JHEP 12 (2001) 008 [hep-th/0110302] [INSPIRE].
  49. [49]
    V.G. Kac, Vertex algebras for beginners, American Mathematical Society, U.S.A. (1997).Google Scholar
  50. [50]
    E. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves, American Mathematical Society, U.S.A. (2001).Google Scholar
  51. [51]
    K. Thielemans, An algorithmic approach to operator product expansions, W algebras and W strings, Ph.D. thesis, Leuven U., 1994. hep-th/9506159 [INSPIRE].
  52. [52]
    K. Thielemans, A Mathematica package for computing operator product expansions, Int. J. Mod. Phys. C 2 (1991) 787 [INSPIRE].
  53. [53]
    C. Quigley, Mirror symmetry in physics: the basics, Fields Inst. Monogr. 34 (2015) 211 [arXiv:1412.8180].MathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    M. Alim, Lectures on mirror symmetry and topological string theory, arXiv:1207.0496 [INSPIRE].
  55. [55]
    B.R. Greene, String theory on Calabi-Yau manifolds, in the proceedings of Fields, strings and duality. Theoretical Advanced Study Institute in Elementary Particle Physics (TASI’96), June 2-28, Boulder, U.S.A. (1996), hep-th/9702155 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of OxfordOxfordU.K.

Personalised recommendations