Advertisement

Minimally extended left-right symmetric model for dark matter with U(1) portal

  • M. J. Neves
  • J. A. Helaÿel-Neto
  • Rabindra N. MohapatraEmail author
  • Nobuchika Okada
Open Access
Regular Article - Theoretical Physics

Abstract

A minimal extension of the left-right symmetric model for neutrino masses that includes a vector-like singlet fermion dark matter (DM) is presented with the DM connected to the visible sector via a gauged U(1) portal. We discuss the symmetry breaking in this model and calculate the mass and mixings of the extra heavy neutral gauge boson at the TeV scale. The extra gauge boson can decay to both standard model particles as well to dark matter. We calculate the relic density of the singlet fermion dark matter and its direct detection cross section and use these constraints to obtain the allowed parameter range for the new gauge coupling and the dark matter mass.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  2. [2]
    R.N. Mohapatra and J.C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].
  3. [3]
    G. Senjanović and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].
  4. [4]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  5. [5]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].CrossRefzbMATHGoogle Scholar
  6. [6]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
  7. [7]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
  8. [8]
    S.L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser. B 61 (1980) 687.Google Scholar
  9. [9]
    Y. Zhang, H. An, X. Ji and R.N. Mohapatra, General CP-violation in Minimal Left-Right Symmetric Model and Constraints on the Right-Handed Scale, Nucl. Phys. B 802 (2008) 247 [arXiv:0712.4218] [INSPIRE].
  10. [10]
    A. Maiezza, M. Nemevšek, F. Nesti and G. Senjanović, Left-Right Symmetry at LHC, Phys. Rev. D 82 (2010) 055022 [arXiv:1005.5160] [INSPIRE].
  11. [11]
    CMS collaboration, Search for a heavy right-handed W boson and a heavy neutrino in events with two same-flavor leptons and two jets at \( \sqrt{s}= 13 \) TeV, JHEP 05 (2018) 148 [arXiv:1803.11116] [INSPIRE].
  12. [12]
    ATLAS collaboration, Search for W tb decays in the hadronic final state using pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 781 (2018) 327 [arXiv:1801.07893] [INSPIRE].
  13. [13]
    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, An \( \epsilon \) improvement from right-handed currents, Phys. Lett. B 767 (2017) 1 [arXiv:1612.03914] [INSPIRE].
  14. [14]
    N. Haba, H. Umeeda and T. Yamada, \( \epsilon \) / \( \epsilon \) Anomaly and Neutron EDM in SU(2)L × SU(2)R × U (1)BL model with Charge Symmetry, JHEP 05 (2018) 052 [arXiv:1802.09903] [INSPIRE].
  15. [15]
    J. Heeck and S. Patra, Minimal Left-Right Symmetric Dark Matter, Phys. Rev. Lett. 115 (2015) 121804 [arXiv:1507.01584] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    Y. Mambrini, N. Nagata, K.A. Olive, J. Quevillon and J. Zheng, Dark matter and gauge coupling unification in nonsupersymmetric SO(10) grand unified models, Phys. Rev. D 91 (2015) 095010 [arXiv:1502.06929] [INSPIRE].
  17. [17]
    C. Garcia-Cely and J. Heeck, Phenomenology of left-right symmetric dark matter, JCAP 03 (2016) 021 [arXiv:1512.03332] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  18. [18]
    A. Berlin, P.J. Fox, D. Hooper and G. Mohlabeng, Mixed Dark Matter in Left-Right Symmetric Models, JCAP 06 (2016) 016 [arXiv:1604.06100] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    S. Patra, Dark matter, lepton and baryon number and left-right symmetric theories, Phys. Rev. D 93 (2016) 093001 [arXiv:1512.04739] [INSPIRE].
  20. [20]
    D. Borah, A. Dasgupta, U.K. Dey, S. Patra and G. Tomar, Multi-component Fermionic Dark Matter and IceCube PeV scale Neutrinos in Left-Right Model with Gauge Unification, JHEP 09 (2017) 005 [arXiv:1704.04138] [INSPIRE].CrossRefGoogle Scholar
  21. [21]
    M. Nemevšek, G. Senjanović and Y. Zhang, Warm Dark Matter in Low Scale Left-Right Theory, JCAP 07 (2012) 006 [arXiv:1205.0844] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    T. Bandyopadhyay and A. Raychaudhuri, Left-right model with TeV fermionic dark matter and unification, Phys. Lett. B 771 (2017) 206 [arXiv:1703.08125] [INSPIRE].
  23. [23]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dirac-fermionic dark matter in U(1) X models, JHEP 10 (2015) 076 [arXiv:1506.06767] [INSPIRE].
  24. [24]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark matter complementarity and the Z portal, Phys. Rev. D 92 (2015) 083004.Google Scholar
  25. [25]
    M.J. Neves and J.A. Helayël-Neto, A Unified Hidden-Sector-Electroweak Model, Paraphotons and the X-Boson, arXiv:1611.07974 [INSPIRE].
  26. [26]
    P.-H. Gu and R.N. Mohapatra, Quark Seesaw, Dark U (1) symmetry and Baryon-Dark Matter Coincidence, Phys. Rev. D 96 (2017) 055011 [arXiv:1705.01872] [INSPIRE].
  27. [27]
    N. Okada, S. Okada and D. Raut, SU(5) × U(1) X grand unification with minimal seesaw and Z -portal dark matter, Phys. Lett. B 780 (2018) 422 [arXiv:1712.05290] [INSPIRE].
  28. [28]
    S. Okada, Z Portal Dark Matter in the Minimal BL Model, Adv. High Energy Phys. 2018 (2018) 5340935 [arXiv:1803.06793] [INSPIRE].
  29. [29]
    ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017) 182 [arXiv:1707.02424] [INSPIRE].
  30. [30]
    CMS collaboration, Search for high-mass resonances in dilepton final states in proton-proton collisions at \( \sqrt{s}= 13 \) TeV, JHEP 06 (2018) 120 [arXiv:1803.06292] [INSPIRE].
  31. [31]
    XENON collaboration, E. Aprile et al., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  32. [32]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].
  33. [33]
    J.F. Gunion, J. Grifols, A. Mendez, B. Kayser and F.I. Olness, Higgs Bosons in Left-Right Symmetric Models, Phys. Rev. D 40 (1989) 1546 [INSPIRE].
  34. [34]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Probing the Higgs Sector of the Minimal Left-Right Symmetric Model at Future Hadron Colliders, JHEP 05 (2016) 174 [arXiv:1602.05947] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    M. Nemevšek, F. Nesti and J.C. Vasquez, Majorana Higgses at colliders, JHEP 04 (2017) 114 [arXiv:1612.06840] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    A. Maiezza, M. Nemevšek and F. Nesti, Perturbativity and mass scales in the minimal left-right symmetric model, Phys. Rev. D 94 (2016) 035008 [arXiv:1603.00360] [INSPIRE].
  37. [37]
    A. Maiezza, G. Senjanović and J.C. Vasquez, Higgs sector of the minimal left-right symmetric theory, Phys. Rev. D 95 (2017) 095004 [arXiv:1612.09146] [INSPIRE].
  38. [38]
    K. Kiers, M. Assis and A.A. Petrov, Higgs sector of the left-right model with explicit CP-violation, Phys. Rev. D 71 (2005) 115015 [hep-ph/0503115] [INSPIRE].
  39. [39]
    G. Barenboim, M. Gorbahn, U. Nierste and M. Raidal, Higgs Sector of the Minimal Left-Right Symmetric Model, Phys. Rev. D 65 (2002) 095003 [hep-ph/0107121] [INSPIRE].
  40. [40]
    R.N. Mohapatra and R.E. Marshak, Local B-L Symmetry of Electroweak Interactions, Majorana Neutrinos and Neutron Oscillations, Phys. Rev. Lett. 44 (1980) 1316 [Erratum ibid. 44 (1980) 1644] [INSPIRE].
  41. [41]
    R.E. Marshak and R.N. Mohapatra, Quark-Lepton Symmetry and B-L as the U(1) Generator of the Electroweak Symmetry Group, Phys. Lett. B 91 (1980) 222 [INSPIRE].
  42. [42]
    C. Wetterich, Neutrino Masses and the Scale of B-L Violation, Nucl. Phys. B 187 (1981) 343 [INSPIRE].
  43. [43]
    A. Masiero, J.F. Nieves and T. Yanagida, B l Violating Proton Decay and Late Cosmological Baryon Production, Phys. Lett. B 116 (1982) 11 [INSPIRE].
  44. [44]
    W. Buchmüller, C. Greub and P. Minkowski, Neutrino masses, neutral vector bosons and the scale of B-L breaking, Phys. Lett. B 267 (1991) 395 [INSPIRE].
  45. [45]
    E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys. 69 (1990) 1 [INSPIRE].MathSciNetzbMATHGoogle Scholar
  46. [46]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  47. [47]
    Planck collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  48. [48]
    LUX, LZ collaboration, M. Szydagis, The Present and Future of Searching for Dark Matter with LUX and LZ, PoS(ICHEP2016)220 [arXiv:1611.05525] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • M. J. Neves
    • 1
  • J. A. Helaÿel-Neto
    • 2
  • Rabindra N. Mohapatra
    • 3
    Email author
  • Nobuchika Okada
    • 4
  1. 1.Departamento de FísicaUniversidade Federal Rural do Rio de JaneiroSeropédicaBrazil
  2. 2.Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil
  3. 3.Maryland Center for Fundamental Physics and Department of PhysicsUniversity of MarylandCollege ParkU.S.A.
  4. 4.Department of Physics and AstronomyUniversity of AlabamaTuscaloosaU.S.A.

Personalised recommendations