Dark side of the seesaw

  • Subhaditya Bhattacharya
  • Ivo de Medeiros Varzielas
  • Biswajit KarmakarEmail author
  • Stephen F. King
  • Arunansu Sil
Open Access
Regular Article - Theoretical Physics


In an attempt to unfold (if any) a possible connection between two apparently uncorrelated sectors, namely neutrino and dark matter, we consider the type-I seesaw and a fermion singlet dark matter to start with. Our construction suggests that there exists a scalar field mediator between these two sectors whose vacuum expectation value not only generates the mass of the dark matter, but also takes part in the neutrino mass generation. While the choice of Z4 symmetry allows us to establish the framework, the vacuum expectation value of the mediator field breaks Z4 to a remnant Z2, that is responsible to keep dark matter stable. Therefore, the observed light neutrino masses and relic abundance constraint on the dark matter, allows us to predict the heavy seesaw scale as illustrated in this paper.The methodology to connect dark matter and neutrino sector, as introduced here, is a generic one and can be applied to other possible neutrino mass generation mechanism and different dark matter candidate(s).


Beyond Standard Model Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    D.O. Caldwell and R.N. Mohapatra, Neutrino mass explanations of solar and atmospheric neutrino deficits and hot dark matter, Phys. Rev. D 48 (1993) 3259 [INSPIRE].Google Scholar
  2. [2]
    R.N. Mohapatra and A. Perez-Lorenzana, Neutrino mass, proton decay and dark matter in TeV scale universal extra dimension models, Phys. Rev. D 67 (2003) 075015 [hep-ph/0212254] [INSPIRE].
  3. [3]
    L.M. Krauss, S. Nasri and M. Trodden, A Model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389] [INSPIRE].
  4. [4]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
  5. [5]
    T. Asaka, S. Blanchet and M. Shaposhnikov, The νMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [INSPIRE].
  6. [6]
    C. Boehm et al., Is it possible to explain neutrino masses with scalar dark matter?, Phys. Rev. D 77 (2008) 043516 [hep-ph/0612228] [INSPIRE].
  7. [7]
    J. Kubo, E. Ma and D. Suematsu, Cold dark matter, radiative neutrino mass, μeγ and neutrinoless double beta decay, Phys. Lett. B 642 (2006) 18 [hep-ph/0604114] [INSPIRE].
  8. [8]
    E. Ma, Common origin of neutrino mass, dark matter and baryogenesis, Mod. Phys. Lett. A 21 (2006) 1777 [hep-ph/0605180] [INSPIRE].
  9. [9]
    T. Hambye, K. Kannike, E. Ma and M. Raidal, Emanations of dark matter: muon anomalous magnetic moment, radiative neutrino mass and novel leptogenesis at the TeV scale, Phys. Rev. D 75 (2007) 095003 [hep-ph/0609228] [INSPIRE].
  10. [10]
    M. Lattanzi and J.W.F. Valle, Decaying warm dark matter and neutrino masses, Phys. Rev. Lett. 99 (2007) 121301 [arXiv:0705.2406] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    E. Ma, Z(3) dark matter and two-loop neutrino mass, Phys. Lett. B 662 (2008) 49 [arXiv:0708.3371] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    R. Allahverdi, B. Dutta and A. Mazumdar, Unifying inflation and dark matter with neutrino masses, Phys. Rev. Lett. 99 (2007) 261301 [arXiv:0708.3983] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    P.-H. Gu and U. Sarkar, Radiative neutrino mass, dark matter and leptogenesis, Phys. Rev. D 77 (2008) 105031 [arXiv:0712.2933] [INSPIRE].Google Scholar
  14. [14]
    N. Sahu and U. Sarkar, Extended Zee model for neutrino mass, leptogenesis and sterile neutrino like dark matter, Phys. Rev. D 78 (2008) 115013 [arXiv:0804.2072] [INSPIRE].Google Scholar
  15. [15]
    C. Arina et al., Minimal supergravity sneutrino dark matter and inverse seesaw neutrino masses, Phys. Rev. Lett. 101 (2008) 161802 [arXiv:0806.3225] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    M. Aoki, S. Kanemura and O. Seto, Neutrino mass, Dark Matter and Baryon Asymmetry via TeV-Scale Physics without Fine-Tuning, Phys. Rev. Lett. 102 (2009) 051805 [arXiv:0807.0361] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    E. Ma and D. Suematsu, Fermion triplet dark matter and radiative neutrino mass, Mod. Phys. Lett. A 24 (2009) 583 [arXiv:0809.0942] [INSPIRE].CrossRefzbMATHGoogle Scholar
  18. [18]
    P.-H. Gu, M. Hirsch, U. Sarkar and J.W.F. Valle, Neutrino masses, leptogenesis and dark matter in hybrid seesaw, Phys. Rev. D 79 (2009) 033010 [arXiv:0811.0953] [INSPIRE].Google Scholar
  19. [19]
    M. Aoki, S. Kanemura and O. Seto, A model of TeV scale physics for neutrino mass, dark matter and baryon asymmetry and its phenomenology, Phys. Rev. D 80 (2009) 033007 [arXiv:0904.3829] [INSPIRE].Google Scholar
  20. [20]
    P.-H. Gu, A left-right symmetric model for neutrino masses, baryon asymmetry and dark matter, Phys. Rev. D 81 (2010) 095002 [arXiv:1001.1341] [INSPIRE].Google Scholar
  21. [21]
    M. Hirsch, S. Morisi, E. Peinado and J.W.F. Valle, Discrete dark matter, Phys. Rev. D 82 (2010) 116003 [arXiv:1007.0871] [INSPIRE].Google Scholar
  22. [22]
    J.N. Esteves et al., A 4 -based neutrino masses with Majoron decaying dark matter, Phys. Rev. D 82 (2010) 073008 [arXiv:1007.0898] [INSPIRE].Google Scholar
  23. [23]
    S. Kanemura, O. Seto and T. Shimomura, Masses of dark matter and neutrino from TeV scale spontaneous U(1)BL breaking, Phys. Rev. D 84 (2011) 016004 [arXiv:1101.5713] [INSPIRE].Google Scholar
  24. [24]
    M. Lindner, D. Schmidt and T. Schwetz, Dark matter and neutrino masses from global U(1)BL symmetry breaking, Phys. Lett. B 705 (2011) 324 [arXiv:1105.4626] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    F.-X. Josse-Michaux and E. Molinaro, A common framework for dark matter, leptogenesis and neutrino masses, Phys. Rev. D 84 (2011) 125021 [arXiv:1108.0482] [INSPIRE].Google Scholar
  26. [26]
    D. Schmidt, T. Schwetz and T. Toma, Direct detection of leptophilic dark matter in a model with radiative neutrino masses, Phys. Rev. D 85 (2012) 073009 [arXiv:1201.0906] [INSPIRE].Google Scholar
  27. [27]
    D. Borah and R. Adhikari, Abelian gauge extension of standard model: dark matter and radiative neutrino mass, Phys. Rev. D 85 (2012) 095002 [arXiv:1202.2718] [INSPIRE].Google Scholar
  28. [28]
    Y. Farzan and E. Ma, Dirac neutrino mass generation from dark matter, Phys. Rev. D 86 (2012) 033007 [arXiv:1204.4890] [INSPIRE].Google Scholar
  29. [29]
    W. Chao, M. Gonderinger and M.J. Ramsey-Musolf, Higgs vacuum stability, neutrino mass and dark matter, Phys. Rev. D 86 (2012) 113017 [arXiv:1210.0491] [INSPIRE].Google Scholar
  30. [30]
    M. Gustafsson, J.M. No and M.A. Rivera, Predictive model for radiatively induced neutrino masses and mixings with dark matter, Phys. Rev. Lett. 110 (2013) 211802 [Erratum ibid. 112 (2014) 259902] [arXiv:1212.4806] [INSPIRE].
  31. [31]
    M. Blennow, M. Carrigan and E. Fernandez Martinez, Probing the dark matter mass and nature with neutrinos, JCAP 06 (2013) 038 [arXiv:1303.4530] [INSPIRE].CrossRefGoogle Scholar
  32. [32]
    S.S.C. Law and K.L. McDonald, A class of inert N-tuplet models with radiative neutrino mass and dark matter, JHEP 09 (2013) 092 [arXiv:1305.6467] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    A.E. Carcamo Hernandez et al., Lepton masses and mixings in an A 4 multi-Higgs model with a radiative seesaw mechanism, Phys. Rev. D 88 (2013) 076014 [arXiv:1307.6499] [INSPIRE].Google Scholar
  34. [34]
    D. Restrepo, O. Zapata and C.E. Yaguna, Models with radiative neutrino masses and viable dark matter candidates, JHEP 11 (2013) 011 [arXiv:1308.3655] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    S. Chakraborty and S. Roy, Higgs boson mass, neutrino masses and mixing and keV dark matter in an U(1)Rlepton number model, JHEP 01 (2014) 101 [arXiv:1309.6538] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    A. Ahriche, C.-S. Chen, K.L. McDonald and S. Nasri, Three-loop model of neutrino mass with dark matter, Phys. Rev. D 90 (2014) 015024 [arXiv:1404.2696] [INSPIRE].Google Scholar
  37. [37]
    S. Kanemura, T. Matsui and H. Sugiyama, Neutrino mass and dark matter from gauged U(1)BL breaking, Phys. Rev. D 90 (2014) 013001 [arXiv:1405.1935] [INSPIRE].Google Scholar
  38. [38]
    W.-C. Huang and F.F. Deppisch, Dark matter origins of neutrino masses, Phys. Rev. D 91 (2015) 093011 [arXiv:1412.2027] [INSPIRE].Google Scholar
  39. [39]
    I. de Medeiros Varzielas, O. Fischer and V. Maurer, \( \mathbb{A} \) 4 symmetry at colliders and in the universe, JHEP 08 (2015) 080 [arXiv:1504.03955] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    B.L. Sánchez-Vega and E.R. Schmitz, Fermionic dark matter and neutrino masses in a B-L model, Phys. Rev. D 92 (2015) 053007 [arXiv:1505.03595] [INSPIRE].Google Scholar
  41. [41]
    S. Fraser, C. Kownacki, E. Ma and O. Popov, Type II radiative seesaw model of neutrino mass with dark matter, Phys. Rev. D 93 (2016) 013021 [arXiv:1511.06375] [INSPIRE].Google Scholar
  42. [42]
    R. Adhikari, D. Borah and E. Ma, New U(1) gauge model of radiative lepton masses with sterile neutrino and dark matter, Phys. Lett. B 755 (2016) 414 [arXiv:1512.05491] [INSPIRE].CrossRefzbMATHGoogle Scholar
  43. [43]
    A. Ahriche, K.L. McDonald, S. Nasri and I. Picek, A critical analysis of one-loop neutrino mass models with minimal dark matter, Phys. Lett. B 757 (2016) 399 [arXiv:1603.01247] [INSPIRE].CrossRefzbMATHGoogle Scholar
  44. [44]
    D. Aristizabal Sierra, C. Simoes and D. Wegman, Closing in on minimal dark matter and radiative neutrino masses, JHEP 06 (2016) 108 [arXiv:1603.04723] [INSPIRE].CrossRefGoogle Scholar
  45. [45]
    W.-B. Lu and P.-H. Gu, Leptogenesis, radiative neutrino masses and inert Higgs triplet dark matter, JCAP 05 (2016) 040 [arXiv:1603.05074] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    S.-Y. Ho, T. Toma and K. Tsumura, Systematic U(1)BL extensions of loop-induced neutrino mass models with dark matter, Phys. Rev. D 94 (2016) 033007 [arXiv:1604.07894] [INSPIRE].Google Scholar
  47. [47]
    M. Escudero, N. Rius and V. Sanz, Sterile neutrino portal to dark matter II: exact dark symmetry, Eur. Phys. J. C 77 (2017) 397 [arXiv:1607.02373] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    C. Bonilla, E. Ma, E. Peinado and J.W.F. Valle, Two-loop Dirac neutrino mass and WIMP dark matter, Phys. Lett. B 762 (2016) 214 [arXiv:1607.03931] [INSPIRE].CrossRefzbMATHGoogle Scholar
  49. [49]
    D. Borah and A. Dasgupta, Common origin of neutrino mass, dark matter and Dirac leptogenesis, JCAP 12 (2016) 034 [arXiv:1608.03872] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    A. Biswas, S. Choubey and S. Khan, Neutrino mass, dark matter and anomalous magnetic moment of muon in a \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \) model, JHEP 09 (2016) 147 [arXiv:1608.04194] [INSPIRE].CrossRefGoogle Scholar
  51. [51]
    I.M. Hierro, S.F. King and S. Rigolin, Higgs portal dark matter and neutrino mass and mixing with a doubly charged scalar, Phys. Lett. B 769 (2017) 121 [arXiv:1609.02872] [INSPIRE].CrossRefGoogle Scholar
  52. [52]
    S. Bhattacharya, S. Jana and S. Nandi, Neutrino masses and scalar singlet dark matter, Phys. Rev. D 95 (2017) 055003 [arXiv:1609.03274] [INSPIRE].Google Scholar
  53. [53]
    S. Chakraborty and J. Chakrabortty, Natural emergence of neutrino masses and dark matter from R-symmetry, JHEP 10 (2017) 012 [arXiv:1701.04566] [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    S. Bhattacharya, N. Sahoo and N. Sahu, Singlet-doublet fermionic dark matter, neutrino mass and collider signatures, Phys. Rev. D 96 (2017) 035010 [arXiv:1704.03417] [INSPIRE].Google Scholar
  55. [55]
    S.-Y. Ho, T. Toma and K. Tsumura, A radiative neutrino mass model with SIMP dark matter, JHEP 07 (2017) 101 [arXiv:1705.00592] [INSPIRE].CrossRefzbMATHGoogle Scholar
  56. [56]
    P. Ghosh, A.K. Saha and A. Sil, Study of electroweak vacuum stability from extended Higgs portal of dark matter and neutrinos, Phys. Rev. D 97 (2018) 075034 [arXiv:1706.04931] [INSPIRE].Google Scholar
  57. [57]
    D. Nanda and D. Borah, Common origin of neutrino mass and dark matter from anomaly cancellation requirements of a U(1)BL model, Phys. Rev. D 96 (2017) 115014 [arXiv:1709.08417] [INSPIRE].Google Scholar
  58. [58]
    N. Narendra, N. Sahoo and N. Sahu, Dark matter assisted Dirac leptogenesis and neutrino mass, Nucl. Phys. B 936 (2018) 76 [arXiv:1712.02960] [INSPIRE].CrossRefzbMATHGoogle Scholar
  59. [59]
    N. Bernal et al., Fermion masses and mixings and dark matter constraints in a model with radiative seesaw mechanism, JHEP 05 (2018) 053 [arXiv:1712.02792] [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    D. Borah, B. Karmakar and D. Nanda, Common origin of Dirac neutrino mass and freeze-in massive particle dark matter, JCAP 07 (2018) 039 [arXiv:1805.11115] [INSPIRE].CrossRefGoogle Scholar
  61. [61]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. 67B (1977) 421 [INSPIRE].
  62. [62]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  63. [63]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].CrossRefzbMATHGoogle Scholar
  64. [64]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].Google Scholar
  65. [65]
    L. Calibbi, A. Crivellin and B. Zaldívar, Flavor portal to dark matter, Phys. Rev. D 92 (2015) 016004 [arXiv:1501.07268] [INSPIRE].
  66. [66]
    I. de Medeiros Varzielas and O. Fischer, Non-abelian family symmetries as portals to dark matter, JHEP 01 (2016) 160 [arXiv:1512.00869] [INSPIRE].CrossRefGoogle Scholar
  67. [67]
    S. Bhattacharya, B. Karmakar, N. Sahu and A. Sil, Unifying the flavor origin of dark matter with leptonic nonzero θ 13, Phys. Rev. D 93 (2016) 115041 [arXiv:1603.04776] [INSPIRE].Google Scholar
  68. [68]
    S. Bhattacharya, B. Karmakar, N. Sahu and A. Sil, Flavor origin of dark matter and its relation with leptonic nonzero θ 13 and Dirac CP phase δ, JHEP 05 (2017) 068 [arXiv:1611.07419] [INSPIRE].CrossRefGoogle Scholar
  69. [69]
    J. Preskill, S.P. Trivedi, F. Wilczek and M.B. Wise, Cosmology and broken discrete symmetry, Nucl. Phys. B 363 (1991) 207 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  70. [70]
    G.R. Dvali, Z. Tavartkiladze and J. Nanobashvili, Biased discrete symmetry and domain wall problem, Phys. Lett. B 352 (1995) 214 [hep-ph/9411387] [INSPIRE].
  71. [71]
    T. Robens and T. Stefaniak, Status of the Higgs singlet extension of the standard model after LHC run 1, Eur. Phys. J. C 75 (2015) 104 [arXiv:1501.02234] [INSPIRE].CrossRefGoogle Scholar
  72. [72]
    T. Robens and T. Stefaniak, LHC benchmark scenarios for the real Higgs singlet extension of the standard model, Eur. Phys. J. C 76 (2016) 268 [arXiv:1601.07880] [INSPIRE].CrossRefGoogle Scholar
  73. [73]
    K. Kannike, Vacuum stability conditions from copositivity criteria, Eur. Phys. J. C 72 (2012) 2093 [arXiv:1205.3781] [INSPIRE].CrossRefGoogle Scholar
  74. [74]
    J. Elias-Miro et al., Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].CrossRefGoogle Scholar
  75. [75]
    O. Lebedev, On stability of the electroweak vacuum and the Higgs portal, Eur. Phys. J. C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE].CrossRefGoogle Scholar
  76. [76]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  77. [77]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  78. [78]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  79. [79]
    N. Arkani-Hamed, S. Dimopoulos and S. Kachru, Predictive landscapes and new physics at a TeV, hep-th/0501082 [INSPIRE].
  80. [80]
    R. Mahbubani and L. Senatore, The minimal model for dark matter and unification, Phys. Rev. D 73 (2006) 043510 [hep-ph/0510064] [INSPIRE].
  81. [81]
    F. D’Eramo, Dark matter and Higgs boson physics, Phys. Rev. D 76 (2007) 083522 [arXiv:0705.4493] [INSPIRE].Google Scholar
  82. [82]
    R. Enberg et al., LHC and dark matter signals of improved naturalness, JHEP 11 (2007) 014 [arXiv:0706.0918] [INSPIRE].CrossRefGoogle Scholar
  83. [83]
    G. Cynolter and E. Lendvai, Electroweak precision constraints on vector-like fermions, Eur. Phys. J. C 58 (2008) 463 [arXiv:0804.4080] [INSPIRE].CrossRefGoogle Scholar
  84. [84]
    T. Cohen, J. Kearney, A. Pierce and D. Tucker-Smith, Singlet-doublet dark matter, Phys. Rev. D 85 (2012) 075003 [arXiv:1109.2604] [INSPIRE].Google Scholar
  85. [85]
    C. Cheung and D. Sanford, Simplified models of mixed dark matter, JCAP 02 (2014) 011 [arXiv:1311.5896] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  86. [86]
    D. Restrepo et al., Radiative neutrino masses in the singlet-doublet fermion dark matter model with scalar singlets, Phys. Rev. D 92 (2015) 013005 [arXiv:1504.07892] [INSPIRE].Google Scholar
  87. [87]
    L. Calibbi, A. Mariotti and P. Tziveloglou, Singlet-doublet model: dark matter searches and LHC constraints, JHEP 10 (2015) 116 [arXiv:1505.03867] [INSPIRE].CrossRefGoogle Scholar
  88. [88]
    A. Freitas, S. Westhoff and J. Zupan, Integrating in the Higgs portal to fermion dark matter, JHEP 09 (2015) 015 [arXiv:1506.04149] [INSPIRE].CrossRefGoogle Scholar
  89. [89]
    N. Bizot and M. Frigerio, Fermionic extensions of the Standard Model in light of the Higgs couplings, JHEP 01 (2016) 036 [arXiv:1508.01645] [INSPIRE].CrossRefGoogle Scholar
  90. [90]
    G. Cynolter, J. Kovács and E. Lendvai, Doublet-singlet model and unitarity, Mod. Phys. Lett. A 31 (2016) 1650013 [arXiv:1509.05323] [INSPIRE].CrossRefzbMATHGoogle Scholar
  91. [91]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].
  92. [92]
    Y.G. Kim, K.Y. Lee and S. Shin, Singlet fermionic dark matter, JHEP 05 (2008) 100 [arXiv:0803.2932] [INSPIRE].Google Scholar
  93. [93]
    S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].CrossRefGoogle Scholar
  94. [94]
    L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a standard model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].CrossRefGoogle Scholar
  95. [95]
    L. Carpenter et al., Mono-Higgs-boson: A new collider probe of dark matter, Phys. Rev. D 89 (2014) 075017 [arXiv:1312.2592] [INSPIRE].Google Scholar
  96. [96]
    J. Abdallah et al., Simplified models for dark matter searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].
  97. [97]
    M.R. Buckley, D. Feld and D. Goncalves, Scalar simplified models for dark matter, Phys. Rev. D 91 (2015) 015017 [arXiv:1410.6497] [INSPIRE].Google Scholar
  98. [98]
    M. Dutra, C.A. de S. Pires and P.S. Rodrigues da Silva, Majorana dark matter through a narrow Higgs portal, JHEP 09 (2015) 147 [arXiv:1504.07222] [INSPIRE].
  99. [99]
    A. De Simone and T. Jacques, Simplified models vs. effective field theory approaches in dark matter searches, Eur. Phys. J. C 76 (2016) 367 [arXiv:1603.08002] [INSPIRE].
  100. [100]
    G. Arcadi et al., The waning of the WIMP? A review of models, searches and constraints, Eur. Phys. J. C 78 (2018) 203 [arXiv:1703.07364] [INSPIRE].CrossRefGoogle Scholar
  101. [101]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  102. [102]
    J. Hisano, K. Ishiwata and N. Nagata, Gluon contribution to the dark matter direct detection, Phys. Rev. D 82 (2010) 115007 [arXiv:1007.2601] [INSPIRE].Google Scholar
  103. [103]
    C. Bonilla, R.M. Fonseca and J.W.F. Valle, Vacuum stability with spontaneous violation of lepton number, Phys. Lett. B 756 (2016) 345 [arXiv:1506.04031] [INSPIRE].CrossRefGoogle Scholar
  104. [104]
    Particle Data Group collaboration, M. Tanabashi et al., Review of Particle Physics, Phys. Rev. D 98 (2018) 030001.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology GuwahatiAssamIndia
  2. 2.CFTP, Departamento de Física, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  3. 3.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.
  4. 4.Theoretical Physics Division, Physical Research LaboratoryAhmedabadIndia

Personalised recommendations