Thermally modified sterile neutrino portal dark matter and gravitational waves from phase transition: the freeze-in case

  • Ligong BianEmail author
  • Yi-Lei Tang
Open Access
Regular Article - Theoretical Physics


We consider the thermal effects into the evaluation of the dark matter production process. With the assistance of the right handed neutrinos, the freeze-in massive particle dark matter production history can be modified by the two-step phase transitions. The kinematic of decay/inverse decay or annihilation processes can be affected by the finite temperature effects as the Universe cools down. The history of the symmetry respected by the model can be revealed by the DM relic abundance evolution processes. The strong first order electroweak phase transition generated gravitational waves can be probed. The number of extra scalars for the Hierarchy problem can be probed through the Higgs off-shell searches at the LHC.


Beyond Standard Model Cosmology of Theories beyond the SM Thermal Field Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics opportunities of a 100 TeV proton-proton collider, Phys. Rept. 652 (2016) 1 [arXiv:1511.06495] [INSPIRE].CrossRefGoogle Scholar
  2. [2]
    Virgo, LIGO Scientific collaboration, B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
  3. [3]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-in production of FIMP dark matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].CrossRefzbMATHGoogle Scholar
  4. [4]
    N. Bernal et al., The dawn of FIMP dark matter: a review of models and constraints, Int. J. Mod. Phys. A 32 (2017) 1730023 [arXiv:1706.07442] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    M. Blennow, E. Fernandez-Martinez and B. Zaldivar, Freeze-in through portals, JCAP 01 (2014) 003 [arXiv:1309.7348] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett. 73 (1994) 3195 [hep-th/9405187] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    H.M. Hodges, Mirror baryons as the dark matter, Phys. Rev. D 47 (1993) 456 [INSPIRE].Google Scholar
  8. [8]
    Z.G. Berezhiani, A.D. Dolgov and R.N. Mohapatra, Asymmetric inflationary reheating and the nature of mirror universe, Phys. Lett. B 375 (1996) 26 [hep-ph/9511221] [INSPIRE].
  9. [9]
    P. Adshead, Y. Cui and J. Shelton, Chilly dark sectors and asymmetric reheating, JHEP 06 (2016) 016 [arXiv:1604.02458] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].
  11. [11]
    M.J. Baker and J. Kopp, Dark matter decay between phase transitions at the weak scale, Phys. Rev. Lett. 119 (2017) 061801 [arXiv:1608.07578] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    M.J. Baker, M. Breitbach, J. Kopp and L. Mittnacht, Dynamic freeze-in: impact of thermal masses and cosmological phase transitions on dark matter production, JHEP 03 (2018) 114 [arXiv:1712.03962] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    A. Hektor, K. Kannike and V. Vaskonen, Modifying dark matter indirect detection signals by thermal effects at freeze-out, Phys. Rev. D 98 (2018) 015032 [arXiv:1801.06184] [INSPIRE].Google Scholar
  14. [14]
    A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric dark matter from leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [INSPIRE].CrossRefzbMATHGoogle Scholar
  15. [15]
    C.O. Dib, C.S. Kim, K. Wang and J. Zhang, Distinguishing Dirac/Majorana sterile neutrinos at the LHC, Phys. Rev. D 94 (2016) 013005 [arXiv:1605.01123] [INSPIRE].Google Scholar
  16. [16]
    C.O. Dib, C.S. Kim and K. Wang, Signatures of Dirac and Majorana sterile neutrinos in trilepton events at the LHC, Phys. Rev. D 95 (2017) 115020 [arXiv:1703.01934] [INSPIRE].Google Scholar
  17. [17]
    C.O. Dib, C.S. Kim and K. Wang, Search for heavy sterile neutrinos in trileptons at the LHC, Chin. Phys. C 41 (2017) 103103 [arXiv:1703.01936] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    M. Becker, Dark matter from freeze-in via the neutrino portal, arXiv:1806.08579 [INSPIRE].
  19. [19]
    M. Chianese and S.F. King, The dark side of the littlest seesaw: freeze-in, the two right-handed neutrino portal and leptogenesis-friendly fimpzillas, JCAP 09 (2018) 027 [arXiv:1806.10606] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    A. Falkowski, E. Kuflik, N. Levi and T. Volansky, Light dark matter from leptogenesis, arXiv:1712.07652 [INSPIRE].
  21. [21]
    D. Goncalves, T. Han and S. Mukhopadhyay, Off-shell Higgs probe of naturalness, Phys. Rev. Lett. 120 (2018) 111801 [Erratum ibid. 121 (2018) 079902] [arXiv:1710.02149] [INSPIRE].
  22. [22]
    M. Escudero, N. Rius and V. Sanz, Sterile neutrino portal to dark matter II: exact dark symmetry, Eur. Phys. J. C 77 (2017) 397 [arXiv:1607.02373] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    Y.-L. Tang and S.-h. Zhu, Dark matter relic abundance and light sterile neutrinos, JHEP 01 (2017) 025 [arXiv:1609.07841] [INSPIRE].CrossRefzbMATHGoogle Scholar
  24. [24]
    H.H. Patel and M.J. Ramsey-Musolf, Baryon washout, electroweak phase transition and perturbation theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].CrossRefzbMATHGoogle Scholar
  25. [25]
    R. Apreda, M. Maggiore, A. Nicolis and A. Riotto, Gravitational waves from electroweak phase transitions, Nucl. Phys. B 631 (2002) 342 [gr-qc/0107033] [INSPIRE].
  26. [26]
    J.M. Cline, G.D. Moore and G. Servant, Was the electroweak phase transition preceded by a color broken phase?, Phys. Rev. D 60 (1999) 105035 [hep-ph/9902220] [INSPIRE].
  27. [27]
    S. Profumo, L. Ubaldi and C. Wainwright, Singlet scalar dark matter: monochromatic gamma rays and metastable vacua, Phys. Rev. D 82 (2010) 123514 [arXiv:1009.5377] [INSPIRE].Google Scholar
  28. [28]
    C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    C. Wainwright and S. Profumo, The impact of a strongly first-order phase transition on the abundance of thermal relics, Phys. Rev. D 80 (2009) 103517 [arXiv:0909.1317] [INSPIRE].Google Scholar
  30. [30]
    M. Quirós, Finite temperature field theory and phase transitions, in the proceedings of the Summer School in High-energy physics and cosmology, June 29–July 17, Trieste, Italy (1998), hep-ph/9901312 [INSPIRE].
  31. [31]
    H.H. Patel and M.J. Ramsey-Musolf, Stepping into electroweak symmetry breaking: phase transitions and Higgs phenomenology, Phys. Rev. D 88 (2013) 035013 [arXiv:1212.5652] [INSPIRE].Google Scholar
  32. [32]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    A. Strumia, Baryogenesis via leptogenesis, in the proceedings of Particle physics beyond the standard model. Summer School on Theoretical Physics, 84th Session, August 1–26, Les Houches, France (2006), hep-ph/0608347 [INSPIRE].
  34. [34]
    T. Hambye and D. Teresi, Higgs doublet decay as the origin of the baryon asymmetry, Phys. Rev. Lett. 117 (2016) 091801 [arXiv:1606.00017] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    K.S. Babu, S. Chakdar and R.N. Mohapatra, Warm dark matter in two Higgs doublet models, Phys. Rev. D 91 (2015) 075020 [arXiv:1412.7745] [INSPIRE].Google Scholar
  36. [36]
    S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical recipes in c: The art of scientific computing, 2nd edition, W.H. Freeman & Co., U.S.A. (1992).Google Scholar
  37. [37]
    G. Hairer, Solving ordinary differential equations II, Springer, Berlin Germany (2010).zbMATHGoogle Scholar
  38. [38]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].
  39. [39]
    A. Alloul et al., FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  40. [40]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  41. [41]
    C.E. Yaguna, The singlet scalar as FIMP dark matter, JHEP 08 (2011) 060 [arXiv:1105.1654] [INSPIRE].CrossRefzbMATHGoogle Scholar
  42. [42]
    XENON collaboration, E. Aprile et al., First dark matter search results from the XENON1T experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  43. [43]
    XENON collaboration, E. Aprile et al., Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  44. [44]
    LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  45. [45]
    PandaX-II collaboration, A. Tan et al., Dark matter results from first 98.7 days of data from the PandaX-II experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].
  46. [46]
    W. Cheng and L. Bian, From inflation to cosmological electroweak phase transition with a complex scalar singlet, Phys. Rev. D 98 (2018) 023524 [arXiv:1801.00662] [INSPIRE].Google Scholar
  47. [47]
    C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].
  48. [48]
    R.G. Cai et al., The gravitational-wave physics, Natl. Sci. Rev. 4 (2017) 687 [arXiv:1703.00187] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    A. Kosowsky, M.S. Turner and R. Watkins, Gravitational radiation from colliding vacuum bubbles, Phys. Rev. D 45 (1992) 4514 [INSPIRE].Google Scholar
  50. [50]
    A. Kosowsky, M.S. Turner and R. Watkins, Gravitational waves from first order cosmological phase transitions, Phys. Rev. Lett. 69 (1992) 2026 [INSPIRE].CrossRefGoogle Scholar
  51. [51]
    A. Kosowsky and M.S. Turner, Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions, Phys. Rev. D 47 (1993) 4372 [astro-ph/9211004] [INSPIRE].
  52. [52]
    S.J. Huber and T. Konstandin, Gravitational wave production by collisions: more bubbles, JCAP 09 (2008) 022 [arXiv:0806.1828] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    M. Kamionkowski, A. Kosowsky and M.S. Turner, Gravitational radiation from first order phase transitions, Phys. Rev. D 49 (1994) 2837 [astro-ph/9310044] [INSPIRE].
  54. [54]
    LISA collaboration, H. Audley et al., Laser interferometer space antenna, arXiv:1702.00786 [INSPIRE].
  55. [55]
    A. Klein et al., Science with the space-based interferometer eLISA: supermassive black hole binaries, Phys. Rev. D 93 (2016) 024003 [arXiv:1511.05581] [INSPIRE].Google Scholar
  56. [56]
    H. Kudoh, A. Taruya, T. Hiramatsu and Y. Himemoto, Detecting a gravitational-wave background with next-generation space interferometers, Phys. Rev. D 73 (2006) 064006 [gr-qc/0511145] [INSPIRE].
  57. [57]
    X. Gong et al., Descope of the ALIA mission, J. Phys. Conf. Ser. 610 (2015) 012011 [arXiv:1410.7296] [INSPIRE].CrossRefGoogle Scholar
  58. [58]
    A. Beniwal et al., Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis, JHEP 08 (2017) 108 [arXiv:1702.06124] [INSPIRE].CrossRefGoogle Scholar
  59. [59]
    V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet, Phys. Rev. D 95 (2017) 123515 [arXiv:1611.02073] [INSPIRE].MathSciNetGoogle Scholar
  60. [60]
    G. Kurup and M. Perelstein, Dynamics of electroweak phase transition in singlet-scalar extension of the standard model, Phys. Rev. D 96 (2017) 015036 [arXiv:1704.03381] [INSPIRE].Google Scholar
  61. [61]
    L. Bian, Renormalization group equation, the naturalness problem and the understanding of the Higgs mass term, Phys. Rev. D 88 (2013) 056022 [arXiv:1308.2783] [INSPIRE].Google Scholar
  62. [62]
    L. Bian, R. Ding and B. Zhu, Two component Higgs-portal dark matter, Phys. Lett. B 728 (2014) 105 [arXiv:1308.3851] [INSPIRE].CrossRefzbMATHGoogle Scholar
  63. [63]
    L. Bian, T. Li, J. Shu and X.-C. Wang, Two component dark matter with multi-Higgs portals, JHEP 03 (2015) 126 [arXiv:1412.5443] [INSPIRE].CrossRefGoogle Scholar
  64. [64]
    W. Cheng and L. Bian, Higgs inflation and cosmological electroweak phase transition with N scalars in the post-Higgs era, arXiv:1805.00199 [INSPIRE].
  65. [65]
    D. Curtin, P. Meade and C.-T. Yu, Testing electroweak baryogenesis with future colliders, JHEP 11 (2014) 127 [arXiv:1409.0005] [INSPIRE].CrossRefGoogle Scholar
  66. [66]
    C.-Y. Chen, J. Kozaczuk and I.M. Lewis, Non-resonant collider signatures of a singlet-driven electroweak phase transition, JHEP 08 (2017) 096 [arXiv:1704.05844] [INSPIRE].Google Scholar
  67. [67]
    E. Izaguirre and B. Shuve, Multilepton and lepton jet probes of sub-weak-scale right-handed neutrinos, Phys. Rev. D 91 (2015) 093010 [arXiv:1504.02470] [INSPIRE].Google Scholar
  68. [68]
    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and collider physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].CrossRefGoogle Scholar
  69. [69]
    J.R. Espinosa, B. Gripaios, T. Konstandin and F. Riva, Electroweak baryogenesis in non-minimal composite Higgs models, JCAP 01 (2012) 012 [arXiv:1110.2876] [INSPIRE].CrossRefGoogle Scholar
  70. [70]
    F.P. Huang, Z. Qian and M. Zhang, Exploring dynamical CP-violation induced baryogenesis by gravitational waves and colliders, Phys. Rev. D 98 (2018) 015014 [arXiv:1804.06813] [INSPIRE].Google Scholar
  71. [71]
    M. Jiang, L. Bian, W. Huang and J. Shu, Impact of a complex singlet: electroweak baryogenesis and dark matter, Phys. Rev. D 93 (2016) 065032 [arXiv:1502.07574] [INSPIRE].Google Scholar
  72. [72]
    J.M. Cline and K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs, JCAP 01 (2013) 012 [arXiv:1210.4196] [INSPIRE].CrossRefGoogle Scholar
  73. [73]
    P.S. Bhupal Dev, A. Mazumdar and S. Qutub, Constraining non-thermal and thermal properties of dark matter, Front. Phys. 2 (2014) 26 [arXiv:1311.5297].Google Scholar
  74. [74]
    X. Chu, T. Hambye and M.H.G. Tytgat, The four basic ways of creating dark matter through a portal, JCAP 05 (2012) 034 [arXiv:1112.0493] [INSPIRE].CrossRefGoogle Scholar
  75. [75]
    N. Bernal et al., Production regimes for self-interacting dark matter, JCAP 03 (2016) 018 [arXiv:1510.08063] [INSPIRE].CrossRefGoogle Scholar
  76. [76]
    T. Tenkanen and V. Vaskonen, Reheating the standard model from a hidden sector, Phys. Rev. D 94 (2016) 083516 [arXiv:1606.00192] [INSPIRE].Google Scholar
  77. [77]
    M. Shaposhnikov and I. Tkachev, The νMSM, inflation and dark matter, Phys. Lett. B 639 (2006) 414 [hep-ph/0604236] [INSPIRE].
  78. [78]
    F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the Hot Big Bang, JCAP 06 (2009) 029 [arXiv:0812.3622] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsChongqing UniversityChongqingChina
  2. 2.Department of PhysicsChung-Ang UniversitySeoulKorea
  3. 3.Quantum Universe CenterKorea Institute for Advanced StudySeoulRepublic of Korea

Personalised recommendations